Update from develop

This commit is contained in:
Matthew Honnibal 2017-10-25 12:45:21 +02:00
commit 075e8118ea
56 changed files with 1634 additions and 226 deletions

View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Ramanan Balakrishnan |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2017-10-19 |
| GitHub username | ramananbalakrishnan |
| Website (optional) | |

View File

@ -56,8 +56,7 @@ def train_ner(nlp, train_data, output_dir):
losses = {}
for batch in minibatch(get_gold_parses(nlp.make_doc, train_data), size=3):
docs, golds = zip(*batch)
nlp.update(docs, golds, losses=losses, sgd=optimizer, update_shared=True,
drop=0.35)
nlp.update(docs, golds, losses=losses, sgd=optimizer, drop=0.35)
print(losses)
if not output_dir:
return
@ -100,9 +99,10 @@ def main(model_name, output_directory=None):
)
]
nlp.pipeline.append(TokenVectorEncoder(nlp.vocab))
nlp.pipeline.append(NeuralEntityRecognizer(nlp.vocab))
nlp.pipeline[-1].add_label('ANIMAL')
nlp.add_pipe(TokenVectorEncoder(nlp.vocab))
ner = NeuralEntityRecognizer(nlp.vocab)
ner.add_label('ANIMAL')
nlp.add_pipe(ner)
train_ner(nlp, train_data, output_directory)
# Test that the entity is recognized

View File

@ -0,0 +1,641 @@
[
{
"id": "wsj_0200",
"paragraphs": [
{
"raw": "In an Oct. 19 review of \"The Misanthrope\" at Chicago's Goodman Theatre (\"Revitalized Classics Take the Stage in Windy City,\" Leisure & Arts), the role of Celimene, played by Kim Cattrall, was mistakenly attributed to Christina Haag. Ms. Haag plays Elianti.",
"sentences": [
{
"tokens": [
{
"head": 44,
"dep": "prep",
"tag": "IN",
"orth": "In",
"ner": "O",
"id": 0
},
{
"head": 3,
"dep": "det",
"tag": "DT",
"orth": "an",
"ner": "O",
"id": 1
},
{
"head": 2,
"dep": "nmod",
"tag": "NNP",
"orth": "Oct.",
"ner": "B-DATE",
"id": 2
},
{
"head": -1,
"dep": "nummod",
"tag": "CD",
"orth": "19",
"ner": "L-DATE",
"id": 3
},
{
"head": -4,
"dep": "pobj",
"tag": "NN",
"orth": "review",
"ner": "O",
"id": 4
},
{
"head": -1,
"dep": "prep",
"tag": "IN",
"orth": "of",
"ner": "O",
"id": 5
},
{
"head": 2,
"dep": "punct",
"tag": "``",
"orth": "``",
"ner": "O",
"id": 6
},
{
"head": 1,
"dep": "det",
"tag": "DT",
"orth": "The",
"ner": "B-WORK_OF_ART",
"id": 7
},
{
"head": -3,
"dep": "pobj",
"tag": "NN",
"orth": "Misanthrope",
"ner": "L-WORK_OF_ART",
"id": 8
},
{
"head": -1,
"dep": "punct",
"tag": "''",
"orth": "''",
"ner": "O",
"id": 9
},
{
"head": -2,
"dep": "prep",
"tag": "IN",
"orth": "at",
"ner": "O",
"id": 10
},
{
"head": 3,
"dep": "poss",
"tag": "NNP",
"orth": "Chicago",
"ner": "U-GPE",
"id": 11
},
{
"head": -1,
"dep": "case",
"tag": "POS",
"orth": "'s",
"ner": "O",
"id": 12
},
{
"head": 1,
"dep": "compound",
"tag": "NNP",
"orth": "Goodman",
"ner": "B-FAC",
"id": 13
},
{
"head": -4,
"dep": "pobj",
"tag": "NNP",
"orth": "Theatre",
"ner": "L-FAC",
"id": 14
},
{
"head": 4,
"dep": "punct",
"tag": "-LRB-",
"orth": "(",
"ner": "O",
"id": 15
},
{
"head": 3,
"dep": "punct",
"tag": "``",
"orth": "``",
"ner": "O",
"id": 16
},
{
"head": 1,
"dep": "amod",
"tag": "VBN",
"orth": "Revitalized",
"ner": "B-WORK_OF_ART",
"id": 17
},
{
"head": 1,
"dep": "nsubj",
"tag": "NNS",
"orth": "Classics",
"ner": "I-WORK_OF_ART",
"id": 18
},
{
"head": -15,
"dep": "appos",
"tag": "VBP",
"orth": "Take",
"ner": "I-WORK_OF_ART",
"id": 19
},
{
"head": 1,
"dep": "det",
"tag": "DT",
"orth": "the",
"ner": "I-WORK_OF_ART",
"id": 20
},
{
"head": -2,
"dep": "dobj",
"tag": "NN",
"orth": "Stage",
"ner": "I-WORK_OF_ART",
"id": 21
},
{
"head": -3,
"dep": "prep",
"tag": "IN",
"orth": "in",
"ner": "I-WORK_OF_ART",
"id": 22
},
{
"head": 1,
"dep": "compound",
"tag": "NNP",
"orth": "Windy",
"ner": "I-WORK_OF_ART",
"id": 23
},
{
"head": -2,
"dep": "pobj",
"tag": "NNP",
"orth": "City",
"ner": "L-WORK_OF_ART",
"id": 24
},
{
"head": -6,
"dep": "punct",
"tag": ",",
"orth": ",",
"ner": "O",
"id": 25
},
{
"head": -7,
"dep": "punct",
"tag": "''",
"orth": "''",
"ner": "O",
"id": 26
},
{
"head": -8,
"dep": "npadvmod",
"tag": "NN",
"orth": "Leisure",
"ner": "B-ORG",
"id": 27
},
{
"head": -1,
"dep": "cc",
"tag": "CC",
"orth": "&",
"ner": "I-ORG",
"id": 28
},
{
"head": -2,
"dep": "conj",
"tag": "NNS",
"orth": "Arts",
"ner": "L-ORG",
"id": 29
},
{
"head": -11,
"dep": "punct",
"tag": "-RRB-",
"orth": ")",
"ner": "O",
"id": 30
},
{
"head": 13,
"dep": "punct",
"tag": ",",
"orth": ",",
"ner": "O",
"id": 31
},
{
"head": 1,
"dep": "det",
"tag": "DT",
"orth": "the",
"ner": "O",
"id": 32
},
{
"head": 11,
"dep": "nsubjpass",
"tag": "NN",
"orth": "role",
"ner": "O",
"id": 33
},
{
"head": -1,
"dep": "prep",
"tag": "IN",
"orth": "of",
"ner": "O",
"id": 34
},
{
"head": -1,
"dep": "pobj",
"tag": "NNP",
"orth": "Celimene",
"ner": "U-PERSON",
"id": 35
},
{
"head": -3,
"dep": "punct",
"tag": ",",
"orth": ",",
"ner": "O",
"id": 36
},
{
"head": -4,
"dep": "acl",
"tag": "VBN",
"orth": "played",
"ner": "O",
"id": 37
},
{
"head": -1,
"dep": "agent",
"tag": "IN",
"orth": "by",
"ner": "O",
"id": 38
},
{
"head": 1,
"dep": "compound",
"tag": "NNP",
"orth": "Kim",
"ner": "B-PERSON",
"id": 39
},
{
"head": -2,
"dep": "pobj",
"tag": "NNP",
"orth": "Cattrall",
"ner": "L-PERSON",
"id": 40
},
{
"head": -8,
"dep": "punct",
"tag": ",",
"orth": ",",
"ner": "O",
"id": 41
},
{
"head": 2,
"dep": "auxpass",
"tag": "VBD",
"orth": "was",
"ner": "O",
"id": 42
},
{
"head": 1,
"dep": "advmod",
"tag": "RB",
"orth": "mistakenly",
"ner": "O",
"id": 43
},
{
"head": 0,
"dep": "root",
"tag": "VBN",
"orth": "attributed",
"ner": "O",
"id": 44
},
{
"head": -1,
"dep": "prep",
"tag": "IN",
"orth": "to",
"ner": "O",
"id": 45
},
{
"head": 1,
"dep": "compound",
"tag": "NNP",
"orth": "Christina",
"ner": "B-PERSON",
"id": 46
},
{
"head": -2,
"dep": "pobj",
"tag": "NNP",
"orth": "Haag",
"ner": "L-PERSON",
"id": 47
},
{
"head": -4,
"dep": "punct",
"tag": ".",
"orth": ".",
"ner": "O",
"id": 48
}
],
"brackets": [
{
"first": 2,
"last": 3,
"label": "NML"
},
{
"first": 1,
"last": 4,
"label": "NP"
},
{
"first": 7,
"last": 8,
"label": "NP-TTL"
},
{
"first": 11,
"last": 12,
"label": "NP"
},
{
"first": 11,
"last": 14,
"label": "NP"
},
{
"first": 10,
"last": 14,
"label": "PP-LOC"
},
{
"first": 6,
"last": 14,
"label": "NP"
},
{
"first": 5,
"last": 14,
"label": "PP"
},
{
"first": 1,
"last": 14,
"label": "NP"
},
{
"first": 17,
"last": 18,
"label": "NP-SBJ"
},
{
"first": 20,
"last": 21,
"label": "NP"
},
{
"first": 23,
"last": 24,
"label": "NP"
},
{
"first": 22,
"last": 24,
"label": "PP-LOC"
},
{
"first": 19,
"last": 24,
"label": "VP"
},
{
"first": 17,
"last": 24,
"label": "S-HLN"
},
{
"first": 27,
"last": 29,
"label": "NP-TMP"
},
{
"first": 15,
"last": 30,
"label": "NP"
},
{
"first": 1,
"last": 30,
"label": "NP"
},
{
"first": 0,
"last": 30,
"label": "PP-LOC"
},
{
"first": 32,
"last": 33,
"label": "NP"
},
{
"first": 35,
"last": 35,
"label": "NP"
},
{
"first": 34,
"last": 35,
"label": "PP"
},
{
"first": 32,
"last": 35,
"label": "NP"
},
{
"first": 39,
"last": 40,
"label": "NP-LGS"
},
{
"first": 38,
"last": 40,
"label": "PP"
},
{
"first": 37,
"last": 40,
"label": "VP"
},
{
"first": 32,
"last": 41,
"label": "NP-SBJ-2"
},
{
"first": 43,
"last": 43,
"label": "ADVP-MNR"
},
{
"first": 46,
"last": 47,
"label": "NP"
},
{
"first": 45,
"last": 47,
"label": "PP-CLR"
},
{
"first": 44,
"last": 47,
"label": "VP"
},
{
"first": 42,
"last": 47,
"label": "VP"
},
{
"first": 0,
"last": 48,
"label": "S"
}
]
},
{
"tokens": [
{
"head": 1,
"dep": "compound",
"tag": "NNP",
"orth": "Ms.",
"ner": "O",
"id": 0
},
{
"head": 1,
"dep": "nsubj",
"tag": "NNP",
"orth": "Haag",
"ner": "U-PERSON",
"id": 1
},
{
"head": 0,
"dep": "root",
"tag": "VBZ",
"orth": "plays",
"ner": "O",
"id": 2
},
{
"head": -1,
"dep": "dobj",
"tag": "NNP",
"orth": "Elianti",
"ner": "U-PERSON",
"id": 3
},
{
"head": -2,
"dep": "punct",
"tag": ".",
"orth": ".",
"ner": "O",
"id": 4
}
],
"brackets": [
{
"first": 0,
"last": 1,
"label": "NP-SBJ"
},
{
"first": 3,
"last": 3,
"label": "NP"
},
{
"first": 2,
"last": 3,
"label": "VP"
},
{
"first": 0,
"last": 4,
"label": "S"
}
]
}
]
}
]
}
]

View File

@ -112,9 +112,10 @@ def _preprocess_doc(docs, drop=0.):
nO=Dimension("Output size"),
nP=Dimension("Maxout pieces"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI) if obj.nP >= 2
else (obj.nF, obj.nO, obj.nI)),
b=Biases("Bias vector",
lambda obj: (obj.nO, obj.nP)),
lambda obj: (obj.nO, obj.nP) if obj.nP >= 2 else (obj.nO,)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
@ -129,17 +130,24 @@ class PrecomputableAffine(Model):
def begin_update(self, X, drop=0.):
tensordot = self.ops.xp.tensordot
ascontiguous = self.ops.xp.ascontiguousarray
Yf = tensordot(X, self.W, axes=[[1], [3]])
if self.nP == 1:
Yf = tensordot(X, self.W, axes=[[1], [2]])
else:
Yf = tensordot(X, self.W, axes=[[1], [3]])
def backward(dY_ids, sgd=None):
dY, ids = dY_ids
Xf = X[ids]
dXf = tensordot(dY, self.W, axes=[[1,2], [1,2]])
if self.nP == 1:
dXf = tensordot(dY, self.W, axes=[[1], [1]])
else:
dXf = tensordot(dY, self.W, axes=[[1,2], [1,2]])
dW = tensordot(dY, Xf, axes=[[0], [0]])
# (o, p, f, i) --> (f, o, p, i)
self.d_W += dW.transpose((2, 0, 1, 3))
if self.nP == 1:
self.d_W += dW.transpose((1, 0, 2))
else:
self.d_W += dW.transpose((2, 0, 1, 3))
self.d_b += dY.sum(axis=0)
if sgd is not None:
@ -169,7 +177,10 @@ class PrecomputableAffine(Model):
def predict(ids, tokvecs):
hiddens = model(tokvecs)
vector = model.ops.allocate((hiddens.shape[0], model.nO, model.nP))
if model.nP == 1:
vector = model.ops.allocate((hiddens.shape[0], model.nO))
else:
vector = model.ops.allocate((hiddens.shape[0], model.nO, model.nP))
model.ops.scatter_add(vector, ids, hiddens)
vector += model.b
if model.nP >= 2:

View File

@ -3,7 +3,7 @@
# https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py
__title__ = 'spacy-nightly'
__version__ = '2.0.0a17'
__version__ = '2.0.0a18'
__summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython'
__uri__ = 'https://spacy.io'
__author__ = 'Explosion AI'

View File

@ -101,7 +101,7 @@ def generate_meta():
def generate_pipeline():
prints("If set to 'True', the default pipeline is used. If set to 'False', "
"the pipeline will be disabled. Components should be specified as a "
"comma-separated list of component names, e.g. tensorizer, tagger, "
"comma-separated list of component names, e.g. tagger, "
"parser, ner. For more information, see the docs on processing pipelines.",
title="Enter your model's pipeline components")
pipeline = util.get_raw_input("Pipeline components", True)

View File

@ -62,5 +62,5 @@ TAG_MAP = {
"VVIZU": {POS: VERB, "VerbForm": "inf"},
"VVPP": {POS: VERB, "Aspect": "perf", "VerbForm": "part"},
"XY": {POS: X},
"SP": {POS: SPACE}
"_SP": {POS: SPACE}
}

View File

@ -42,6 +42,7 @@ TAG_MAP = {
"RBR": {POS: ADV, "Degree": "comp"},
"RBS": {POS: ADV, "Degree": "sup"},
"RP": {POS: PART},
"SP": {POS: SPACE},
"SYM": {POS: SYM},
"TO": {POS: PART, "PartType": "inf", "VerbForm": "inf"},
"UH": {POS: INTJ},
@ -55,11 +56,11 @@ TAG_MAP = {
"WP": {POS: NOUN, "PronType": "int|rel"},
"WP$": {POS: ADJ, "Poss": "yes", "PronType": "int|rel"},
"WRB": {POS: ADV, "PronType": "int|rel"},
"SP": {POS: SPACE},
"ADD": {POS: X},
"NFP": {POS: PUNCT},
"GW": {POS: X},
"XX": {POS: X},
"BES": {POS: VERB},
"HVS": {POS: VERB}
"HVS": {POS: VERB},
"_SP": {POS: SPACE},
}

View File

@ -303,5 +303,5 @@ TAG_MAP = {
"VERB__VerbForm=Ger": {"morph": "VerbForm=Ger", "pos": "VERB"},
"VERB__VerbForm=Inf": {"morph": "VerbForm=Inf", "pos": "VERB"},
"X___": {"morph": "_", "pos": "X"},
"SP": {"morph": "_", "pos": "SPACE"},
"_SP": {"morph": "_", "pos": "SPACE"},
}

View File

@ -33,8 +33,7 @@ class Japanese(Language):
Defaults = JapaneseDefaults
def make_doc(self, text):
words = self.tokenizer(text)
return Doc(self.vocab, words=words, spaces=[False]*len(words))
return self.tokenizer(text)
__all__ = ['Japanese']

18
spacy/lang/ja/examples.py Normal file
View File

@ -0,0 +1,18 @@
# coding: utf8
from __future__ import unicode_literals
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.ja.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
'アップルがイギリスの新興企業を10億ドルで購入を検討',
'自動運転車の損害賠償責任、自動車メーカーに一定の負担を求める',
'歩道を走る自動配達ロボ、サンフランシスコ市が走行禁止を検討',
'ロンドンはイギリスの大都市です。'
]

View File

@ -19,63 +19,64 @@ TAG_MAP = {
"NPRP": {POS: PRON},
# ADJ
"ADJ": {POS: ADJ},
"NONM": {POS: ADJ},
"VATT": {POS: ADJ},
"DONM": {POS: ADJ},
"NONM": {POS: ADJ},
"VATT": {POS: ADJ},
"DONM": {POS: ADJ},
# ADV
"ADV": {POS: ADV},
"ADVN": {POS: ADV},
"ADVI": {POS: ADV},
"ADVP": {POS: ADV},
"ADVS": {POS: ADV},
"ADVN": {POS: ADV},
"ADVI": {POS: ADV},
"ADVP": {POS: ADV},
"ADVS": {POS: ADV},
# INT
"INT": {POS: INTJ},
# PRON
"PROPN": {POS: PROPN},
"PPRS": {POS: PROPN},
"PDMN": {POS: PROPN},
"PNTR": {POS: PROPN},
"PPRS": {POS: PROPN},
"PDMN": {POS: PROPN},
"PNTR": {POS: PROPN},
# DET
"DET": {POS: DET},
"DDAN": {POS: DET},
"DDAC": {POS: DET},
"DDBQ": {POS: DET},
"DDAQ": {POS: DET},
"DIAC": {POS: DET},
"DIBQ": {POS: DET},
"DIAQ": {POS: DET},
"DCNM": {POS: DET},
"DDAN": {POS: DET},
"DDAC": {POS: DET},
"DDBQ": {POS: DET},
"DDAQ": {POS: DET},
"DIAC": {POS: DET},
"DIBQ": {POS: DET},
"DIAQ": {POS: DET},
"DCNM": {POS: DET},
# NUM
"NUM": {POS: NUM},
"NCNM": {POS: NUM},
"NLBL": {POS: NUM},
"DCNM": {POS: NUM},
"NCNM": {POS: NUM},
"NLBL": {POS: NUM},
"DCNM": {POS: NUM},
# AUX
"AUX": {POS: AUX},
"XVBM": {POS: AUX},
"XVAM": {POS: AUX},
"XVMM": {POS: AUX},
"XVBB": {POS: AUX},
"XVAE": {POS: AUX},
"XVBM": {POS: AUX},
"XVAM": {POS: AUX},
"XVMM": {POS: AUX},
"XVBB": {POS: AUX},
"XVAE": {POS: AUX},
# ADP
"ADP": {POS: ADP},
"RPRE": {POS: ADP},
"RPRE": {POS: ADP},
# CCONJ
"CCONJ": {POS: CCONJ},
"JCRG": {POS: CCONJ},
"JCRG": {POS: CCONJ},
# SCONJ
"SCONJ": {POS: SCONJ},
"PREL": {POS: SCONJ},
"JSBR": {POS: SCONJ},
"JCMP": {POS: SCONJ},
"PREL": {POS: SCONJ},
"JSBR": {POS: SCONJ},
"JCMP": {POS: SCONJ},
# PART
"PART": {POS: PART},
"FIXN": {POS: PART},
"FIXV": {POS: PART},
"EAFF": {POS: PART},
"AITT": {POS: PART},
"NEG": {POS: PART},
"PART": {POS: PART},
"FIXN": {POS: PART},
"FIXV": {POS: PART},
"EAFF": {POS: PART},
"AITT": {POS: PART},
"NEG": {POS: PART},
# PUNCT
"PUNCT": {POS: PUNCT},
"PUNC": {POS: PUNCT}
"PUNC": {POS: PUNCT},
"_SP": {POS: SPACE}
}

18
spacy/lang/zh/examples.py Normal file
View File

@ -0,0 +1,18 @@
# coding: utf8
from __future__ import unicode_literals
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.zh.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"蘋果公司正考量用一億元買下英國的新創公司",
"自駕車將保險責任歸屬轉移至製造商",
"舊金山考慮禁止送貨機器人在人行道上行駛",
"倫敦是英國的大城市"
]

View File

@ -7,8 +7,8 @@ from .symbols import VerbForm_inf, VerbForm_none, Number_sing, Degree_pos
class Lemmatizer(object):
@classmethod
def load(cls, path, index=None, exc=None, rules=None):
return cls(index or {}, exc or {}, rules or {})
def load(cls, path, index=None, exc=None, rules=None, lookup=None):
return cls(index or {}, exc or {}, rules or {}, lookup or {})
def __init__(self, index=None, exceptions=None, rules=None, lookup=None):
self.index = index if index is not None else {}
@ -26,10 +26,10 @@ class Lemmatizer(object):
elif univ_pos in (PUNCT, 'PUNCT', 'punct'):
univ_pos = 'punct'
else:
return set([string.lower()])
return list(set([string.lower()]))
# See Issue #435 for example of where this logic is requied.
if self.is_base_form(univ_pos, morphology):
return set([string.lower()])
return list(set([string.lower()]))
lemmas = lemmatize(string, self.index.get(univ_pos, {}),
self.exc.get(univ_pos, {}),
self.rules.get(univ_pos, []))
@ -108,4 +108,4 @@ def lemmatize(string, index, exceptions, rules):
forms.extend(oov_forms)
if not forms:
forms.append(string)
return set(forms)
return list(set(forms))

View File

@ -69,6 +69,7 @@ cdef enum action_t:
REPEAT
ACCEPT
ADVANCE_ZERO
ACCEPT_PREV
PANIC
# A "match expression" conists of one or more token patterns
@ -120,24 +121,27 @@ cdef attr_t get_pattern_key(const TokenPatternC* pattern) except 0:
cdef int get_action(const TokenPatternC* pattern, const TokenC* token) nogil:
lookahead = &pattern[1]
for attr in pattern.attrs[:pattern.nr_attr]:
if get_token_attr(token, attr.attr) != attr.value:
if pattern.quantifier == ONE:
return REJECT
elif pattern.quantifier == ZERO:
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE
return ACCEPT if lookahead.nr_attr == 0 else ADVANCE
elif pattern.quantifier in (ZERO_ONE, ZERO_PLUS):
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE_ZERO
return ACCEPT_PREV if lookahead.nr_attr == 0 else ADVANCE_ZERO
else:
return PANIC
if pattern.quantifier == ZERO:
return REJECT
elif lookahead.nr_attr == 0:
return ACCEPT
elif pattern.quantifier in (ONE, ZERO_ONE):
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE
return ADVANCE
elif pattern.quantifier == ZERO_PLUS:
# This is a bandaid over the 'shadowing' problem described here:
# https://github.com/explosion/spaCy/issues/864
next_action = get_action(pattern+1, token)
next_action = get_action(lookahead, token)
if next_action is REJECT:
return REPEAT
else:
@ -345,6 +349,9 @@ cdef class Matcher:
while action == ADVANCE_ZERO:
state.second += 1
action = get_action(state.second, token)
if action == PANIC:
raise Exception("Error selecting action in matcher")
if action == REPEAT:
# Leave the state in the queue, and advance to next slot
# (i.e. we don't overwrite -- we want to greedily match more
@ -356,14 +363,15 @@ cdef class Matcher:
partials[q] = state
partials[q].second += 1
q += 1
elif action == ACCEPT:
elif action in (ACCEPT, ACCEPT_PREV):
# TODO: What to do about patterns starting with ZERO? Need to
# adjust the start position.
start = state.first
end = token_i+1
end = token_i+1 if action == ACCEPT else token_i
ent_id = state.second[1].attrs[0].value
label = state.second[1].attrs[1].value
matches.append((ent_id, start, end))
partials.resize(q)
# Check whether we open any new patterns on this token
for pattern in self.patterns:
@ -383,15 +391,15 @@ cdef class Matcher:
state.first = token_i
state.second = pattern + 1
partials.push_back(state)
elif action == ACCEPT:
elif action in (ACCEPT, ACCEPT_PREV):
start = token_i
end = token_i+1
end = token_i+1 if action == ACCEPT else token_i
ent_id = pattern[1].attrs[0].value
label = pattern[1].attrs[1].value
matches.append((ent_id, start, end))
# Look for open patterns that are actually satisfied
for state in partials:
while state.second.quantifier in (ZERO, ZERO_PLUS):
while state.second.quantifier in (ZERO, ZERO_ONE, ZERO_PLUS):
state.second += 1
if state.second.nr_attr == 0:
start = state.first

View File

@ -44,7 +44,7 @@ cdef class Morphology:
cdef int assign_feature(self, uint64_t* morph, univ_morph_t feat_id, bint value) except -1
cpdef enum univ_morph_t:
cdef enum univ_morph_t:
NIL = 0
Animacy_anim = symbols.Animacy_anim
Animacy_inam

View File

@ -4,7 +4,7 @@ from __future__ import unicode_literals
from libc.string cimport memset
from .parts_of_speech cimport ADJ, VERB, NOUN, PUNCT
from .parts_of_speech cimport ADJ, VERB, NOUN, PUNCT, SPACE
from .attrs cimport POS, IS_SPACE
from .parts_of_speech import IDS as POS_IDS
from .lexeme cimport Lexeme
@ -36,14 +36,22 @@ cdef class Morphology:
def __init__(self, StringStore string_store, tag_map, lemmatizer, exc=None):
self.mem = Pool()
self.strings = string_store
# Add special space symbol. We prefix with underscore, to make sure it
# always sorts to the end.
space_attrs = tag_map.get('SP', {POS: SPACE})
if '_SP' not in tag_map:
self.strings.add('_SP')
tag_map = dict(tag_map)
tag_map['_SP'] = space_attrs
self.tag_names = tuple(sorted(tag_map.keys()))
self.tag_map = {}
self.lemmatizer = lemmatizer
self.n_tags = len(tag_map)
self.tag_names = tuple(sorted(tag_map.keys()))
self.reverse_index = {}
self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags+1, sizeof(RichTagC))
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
self.strings.add(tag_str)
self.tag_map[tag_str] = dict(attrs)
attrs = _normalize_props(attrs)
attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
@ -93,7 +101,7 @@ cdef class Morphology:
# the statistical model fails.
# Related to Issue #220
if Lexeme.c_check_flag(token.lex, IS_SPACE):
tag_id = self.reverse_index[self.strings.add('SP')]
tag_id = self.reverse_index[self.strings.add('_SP')]
rich_tag = self.rich_tags[tag_id]
analysis = <MorphAnalysisC*>self._cache.get(tag_id, token.lex.orth)
if analysis is NULL:
@ -164,7 +172,7 @@ cdef class Morphology:
cdef unicode py_string = self.strings[orth]
if self.lemmatizer is None:
return self.strings.add(py_string.lower())
cdef set lemma_strings
cdef list lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, univ_pos, morphology)
lemma_string = sorted(lemma_strings)[0]
@ -426,3 +434,7 @@ IDS = {
NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])]
# Unfortunate hack here, to work around problem with long cpdef enum
# (which is generating an enormous amount of C++ in Cython 0.24+)
# We keep the enum cdef, and just make sure the names are available to Python
locals().update(IDS)

View File

@ -13,12 +13,12 @@ cdef enum symbol_t:
LIKE_EMAIL
IS_STOP
IS_OOV
IS_BRACKET
IS_QUOTE
IS_LEFT_PUNCT
IS_RIGHT_PUNCT
FLAG14 = 14
FLAG15
FLAG16
FLAG17
FLAG18
FLAG18 = 18
FLAG19
FLAG20
FLAG21
@ -455,15 +455,5 @@ cdef enum symbol_t:
root
xcomp
# Move these up to FLAG14--FLAG18 once we finish the functionality
# and are ready to regenerate the model.
#IS_BRACKET
#IS_QUOTE
#IS_LEFT_PUNCT
#IS_RIGHT_PUNCT
# These symbols are currently missing. However, if we add them currently,
# we'll throw off the integer index and the model will have to be retrained.
# We therefore wait until the next data version to add them.
# acl
acl
LAW

View File

@ -18,10 +18,11 @@ IDS = {
"LIKE_EMAIL": LIKE_EMAIL,
"IS_STOP": IS_STOP,
"IS_OOV": IS_OOV,
"FLAG14": FLAG14,
"FLAG15": FLAG15,
"FLAG16": FLAG16,
"FLAG17": FLAG17,
"IS_BRACKET": IS_BRACKET,
"IS_QUOTE": IS_QUOTE,
"IS_LEFT_PUNCT": IS_LEFT_PUNCT,
"IS_RIGHT_PUNCT": IS_RIGHT_PUNCT,
"FLAG18": FLAG18,
"FLAG19": FLAG19,
"FLAG20": FLAG20,
@ -457,7 +458,10 @@ IDS = {
"quantmod": quantmod,
"rcmod": rcmod,
"root": root,
"xcomp": xcomp
"xcomp": xcomp,
"acl": acl,
"LAW": LAW
}
def sort_nums(x):

View File

@ -2,6 +2,8 @@ from libc.string cimport memcpy, memset, memmove
from libc.stdlib cimport malloc, calloc, free
from libc.stdint cimport uint32_t, uint64_t
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
from murmurhash.mrmr cimport hash64
from ..vocab cimport EMPTY_LEXEME
@ -55,6 +57,11 @@ cdef cppclass StateC:
this.shifted = <bint*>calloc(length + (PADDING * 2), sizeof(bint))
this._sent = <TokenC*>calloc(length + (PADDING * 2), sizeof(TokenC))
this._ents = <Entity*>calloc(length + (PADDING * 2), sizeof(Entity))
if not (this._buffer and this._stack and this.shifted
and this._sent and this._ents):
with gil:
PyErr_SetFromErrno(MemoryError)
PyErr_CheckSignals()
memset(&this._hist, 0, sizeof(this._hist))
this.offset = 0
cdef int i

View File

@ -212,7 +212,8 @@ cdef class LeftArc:
cdef class RightArc:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
return st.B_(0).sent_start != 1
# If there's (perhaps partial) parse pre-set, don't allow cycle.
return st.B_(0).sent_start != 1 and st.H(st.S(0)) != st.B(0)
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
@ -446,14 +447,19 @@ cdef class ArcEager(TransitionSystem):
cdef int initialize_state(self, StateC* st) nogil:
for i in range(st.length):
st._sent[i].l_edge = i
st._sent[i].r_edge = i
if st._sent[i].dep == 0:
st._sent[i].l_edge = i
st._sent[i].r_edge = i
st._sent[i].head = 0
st._sent[i].dep = 0
st._sent[i].l_kids = 0
st._sent[i].r_kids = 0
st.fast_forward()
cdef int finalize_state(self, StateC* st) nogil:
cdef int i
for i in range(st.length):
if st._sent[i].head == 0 and st._sent[i].dep == 0:
if st._sent[i].head == 0:
st._sent[i].dep = self.root_label
def finalize_doc(self, doc):

View File

@ -1,5 +1,4 @@
# cython: infer_types=True
# cython: profile=True
# cython: cdivision=True
# cython: boundscheck=False
# coding: utf-8
@ -22,7 +21,7 @@ cimport numpy as np
from libcpp.vector cimport vector
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
@ -440,6 +439,7 @@ cdef class Parser:
self._parseC(states[i],
feat_weights, bias, hW, hb,
nr_class, nr_hidden, nr_feat, nr_piece)
PyErr_CheckSignals()
return state_objs
cdef void _parseC(self, StateC* state,
@ -450,7 +450,11 @@ cdef class Parser:
is_valid = <int*>calloc(nr_class, sizeof(int))
vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
scores = <float*>calloc(nr_class, sizeof(float))
if not (token_ids and is_valid and vectors and scores):
with gil:
PyErr_SetFromErrno(MemoryError)
PyErr_CheckSignals()
while not state.is_final():
state.set_context_tokens(token_ids, nr_feat)
memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))

View File

@ -17,6 +17,26 @@ def test_doc_array_attr_of_token(en_tokenizer, en_vocab):
assert feats_array[0][0] != feats_array[0][1]
def test_doc_stringy_array_attr_of_token(en_tokenizer, en_vocab):
text = "An example sentence"
tokens = en_tokenizer(text)
example = tokens.vocab["example"]
assert example.orth != example.shape
feats_array = tokens.to_array((ORTH, SHAPE))
feats_array_stringy = tokens.to_array(("ORTH", "SHAPE"))
assert feats_array_stringy[0][0] == feats_array[0][0]
assert feats_array_stringy[0][1] == feats_array[0][1]
def test_doc_scalar_attr_of_token(en_tokenizer, en_vocab):
text = "An example sentence"
tokens = en_tokenizer(text)
example = tokens.vocab["example"]
assert example.orth != example.shape
feats_array = tokens.to_array(ORTH)
assert feats_array.shape == (3,)
def test_doc_array_tag(en_tokenizer):
text = "A nice sentence."
pos = ['DET', 'ADJ', 'NOUN', 'PUNCT']

View File

@ -2,6 +2,8 @@
from __future__ import unicode_literals
from ..util import get_doc
from ...tokens import Doc
from ...vocab import Vocab
import pytest
import numpy
@ -204,19 +206,20 @@ def test_doc_api_right_edge(en_tokenizer):
assert doc[6].right_edge.text == ','
@pytest.mark.xfail
@pytest.mark.parametrize('text,vectors', [
("apple orange pear", ["apple -1 -1 -1", "orange -1 -1 0", "pear -1 0 -1"])
])
def test_doc_api_has_vector(en_tokenizer, text_file, text, vectors):
text_file.write('\n'.join(vectors))
text_file.seek(0)
vector_length = en_tokenizer.vocab.load_vectors(text_file)
assert vector_length == 3
doc = en_tokenizer(text)
def test_doc_api_has_vector():
vocab = Vocab()
vocab.clear_vectors(2)
vocab.vectors.add('kitten', numpy.asarray([0., 2.], dtype='f'))
doc = Doc(vocab, words=['kitten'])
assert doc.has_vector
def test_lowest_common_ancestor(en_tokenizer):
tokens = en_tokenizer('the lazy dog slept')
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
lca = doc.get_lca_matrix()
assert(lca[1, 1] == 1)
assert(lca[0, 1] == 2)
assert(lca[1, 2] == 2)
def test_parse_tree(en_tokenizer):
"""Tests doc.print_tree() method."""

View File

@ -3,6 +3,8 @@ from __future__ import unicode_literals
from ...attrs import IS_ALPHA, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_TITLE, IS_STOP
from ..util import get_doc
from ...vocab import Vocab
from ...tokens import Doc
import pytest
import numpy
@ -68,26 +70,21 @@ def test_doc_token_api_is_properties(en_vocab):
assert doc[5].like_email
@pytest.mark.xfail
@pytest.mark.parametrize('text,vectors', [
("apples oranges ldskbjls", ["apples -1 -1 -1", "oranges -1 -1 0"])
])
def test_doc_token_api_vectors(en_tokenizer, text_file, text, vectors):
text_file.write('\n'.join(vectors))
text_file.seek(0)
vector_length = en_tokenizer.vocab.load_vectors(text_file)
assert vector_length == 3
def test_doc_token_api_vectors():
vocab = Vocab()
vocab.clear_vectors(2)
vocab.vectors.add('apples', numpy.asarray([0., 2.], dtype='f'))
vocab.vectors.add('oranges', numpy.asarray([0., 1.], dtype='f'))
doc = Doc(vocab, words=['apples', 'oranges', 'oov'])
assert doc.has_vector
tokens = en_tokenizer(text)
assert tokens[0].has_vector
assert tokens[1].has_vector
assert not tokens[2].has_vector
assert tokens[0].similarity(tokens[1]) > tokens[0].similarity(tokens[2])
assert tokens[0].similarity(tokens[1]) == tokens[1].similarity(tokens[0])
assert sum(tokens[0].vector) != sum(tokens[1].vector)
assert numpy.isclose(
tokens[0].vector_norm,
numpy.sqrt(numpy.dot(tokens[0].vector, tokens[0].vector)))
assert doc[0].has_vector
assert doc[1].has_vector
assert not doc[2].has_vector
apples_norm = (0*0 + 2*2) ** 0.5
oranges_norm = (0*0 + 1*1) ** 0.5
cosine = ((0*0) + (2*1)) / (apples_norm * oranges_norm)
assert doc[0].similarity(doc[1]) == cosine
def test_doc_token_api_ancestors(en_tokenizer):

View File

@ -0,0 +1,23 @@
from __future__ import unicode_literals
import pytest
from ...lang.en import English
from ...util import load_model
def test_issue1242_empty_strings():
nlp = English()
doc = nlp('')
assert len(doc) == 0
docs = list(nlp.pipe(['', 'hello']))
assert len(docs[0]) == 0
assert len(docs[1]) == 1
@pytest.mark.models('en')
def test_issue1242_empty_strings_en_core_web_sm():
nlp = load_model('en_core_web_sm')
doc = nlp('')
assert len(doc) == 0
docs = list(nlp.pipe(['', 'hello']))
assert len(docs[0]) == 0
assert len(docs[1]) == 1

View File

@ -0,0 +1,13 @@
from __future__ import unicode_literals
from ...tokenizer import Tokenizer
from ...symbols import ORTH, LEMMA, POS
from ...lang.en import English
def test_issue1250_cached_special_cases():
nlp = English()
nlp.tokenizer.add_special_case(u'reimbur', [{ORTH: u'reimbur', LEMMA: u'reimburse', POS: u'VERB'}])
lemmas = [w.lemma_ for w in nlp(u'reimbur, reimbur...')]
assert lemmas == ['reimburse', ',', 'reimburse', '...']
lemmas = [w.lemma_ for w in nlp(u'reimbur, reimbur...')]
assert lemmas == ['reimburse', ',', 'reimburse', '...']

View File

@ -0,0 +1,20 @@
from __future__ import unicode_literals
import pytest
import spacy
def ss(tt):
for i in range(len(tt)-1):
for j in range(i+1, len(tt)):
tt[i:j].root
@pytest.mark.models('en')
def test_access_parse_for_merged():
nlp = spacy.load('en_core_web_sm')
t_t = nlp.tokenizer("Highly rated - I'll definitely")
nlp.tagger(t_t)
nlp.parser(t_t)
nlp.parser(t_t)
ss(t_t)

View File

@ -1,8 +1,11 @@
import pytest
import spacy
@pytest.mark.models('en')
def test_issue1305(EN):
#@pytest.mark.models('en')
def test_issue1305():
'''Test lemmatization of English VBZ'''
assert EN.vocab.morphology.lemmatizer('works', 'verb') == set(['work'])
doc = EN(u'This app works well')
nlp = spacy.load('en_core_web_sm')
assert nlp.vocab.morphology.lemmatizer('works', 'verb') == ['work']
doc = nlp(u'This app works well')
print([(w.text, w.tag_) for w in doc])
assert doc[2].lemma_ == 'work'

View File

@ -0,0 +1,16 @@
from __future__ import unicode_literals
import pytest
from ...vocab import Vocab
from ...tokens.doc import Doc
def test_issue1375():
'''Test that token.nbor() raises IndexError for out-of-bounds access.'''
doc = Doc(Vocab(), words=['0', '1', '2'])
with pytest.raises(IndexError):
assert doc[0].nbor(-1)
assert doc[1].nbor(-1).text == '0'
with pytest.raises(IndexError):
assert doc[2].nbor(1)
assert doc[1].nbor(1).text == '2'

View File

@ -0,0 +1,22 @@
from __future__ import unicode_literals
from ...vocab import Vocab
from ...lang.lex_attrs import LEX_ATTRS
from ...tokens import Doc
from ...matcher import Matcher
def test_issue1434():
'''Test matches occur when optional element at end of short doc'''
vocab = Vocab(lex_attr_getters=LEX_ATTRS)
hello_world = Doc(vocab, words=['Hello', 'World'])
hello = Doc(vocab, words=['Hello'])
matcher = Matcher(vocab)
matcher.add('MyMatcher', None,
[ {'ORTH': 'Hello' }, {'IS_ALPHA': True, 'OP': '?'} ])
matches = matcher(hello_world)
assert matches
matches = matcher(hello)
assert matches

View File

@ -0,0 +1,58 @@
from __future__ import unicode_literals
import pytest
from ...matcher import Matcher
from ...tokens import Doc
from ...vocab import Vocab
@pytest.mark.parametrize(
'string,start,end',
[
('a', 0, 1),
('a b', 0, 2),
('a c', 0, 1),
('a b c', 0, 2),
('a b b c', 0, 2),
('a b b', 0, 2),
]
)
def test_issue1450_matcher_end_zero_plus(string, start, end):
'''Test matcher works when patterns end with * operator.
Original example (rewritten to avoid model usage)
nlp = spacy.load('en_core_web_sm')
matcher = Matcher(nlp.vocab)
matcher.add(
"TSTEND",
on_match_1,
[
{TAG: "JJ", LOWER: "new"},
{TAG: "NN", 'OP': "*"}
]
)
doc = nlp(u'Could you create a new ticket for me?')
print([(w.tag_, w.text, w.lower_) for w in doc])
matches = matcher(doc)
print(matches)
assert len(matches) == 1
assert matches[0][1] == 4
assert matches[0][2] == 5
'''
matcher = Matcher(Vocab())
matcher.add(
"TSTEND",
None,
[
{'ORTH': "a"},
{'ORTH': "b", 'OP': "*"}
]
)
doc = Doc(Vocab(), words=string.split())
matches = matcher(doc)
if start is None or end is None:
assert matches == []
assert matches[0][1] == start
assert matches[0][2] == end

View File

@ -9,4 +9,4 @@ import pytest
@pytest.mark.parametrize('word,lemmas', [("chromosomes", ["chromosome"]), ("endosomes", ["endosome"]), ("colocalizes", ["colocalize", "colocaliz"])])
def test_issue781(EN, word, lemmas):
lemmatizer = EN.Defaults.create_lemmatizer()
assert lemmatizer(word, 'noun', morphology={'number': 'plur'}) == set(lemmas)
assert lemmatizer(word, 'noun', morphology={'number': 'plur'}) == lemmas

View File

@ -55,6 +55,17 @@ def test_spans_span_sent(doc):
assert doc[6:7].sent.root.left_edge.text == 'This'
def test_spans_lca_matrix(en_tokenizer):
"""Test span's lca matrix generation"""
tokens = en_tokenizer('the lazy dog slept')
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
lca = doc[:2].get_lca_matrix()
assert(lca[0, 0] == 0)
assert(lca[0, 1] == -1)
assert(lca[1, 0] == -1)
assert(lca[1, 1] == 1)
def test_spans_default_sentiment(en_tokenizer):
"""Test span.sentiment property's default averaging behaviour"""
text = "good stuff bad stuff"
@ -89,7 +100,7 @@ def test_spans_are_hashable(en_tokenizer):
assert hash(span1) != hash(span2)
span3 = tokens[0:2]
assert hash(span3) == hash(span1)
def test_spans_by_character(doc):
span1 = doc[1:-2]
@ -106,3 +117,9 @@ def test_span_to_array(doc):
assert arr[0, 0] == span[0].orth
assert arr[0, 1] == len(span[0])
@pytest.mark.xfail
def test_span_as_doc(doc):
span = doc[4:10]
span_doc = span.as_doc()
assert span.text == span_doc.text

View File

@ -3,6 +3,7 @@ from __future__ import unicode_literals
from ..matcher import Matcher, PhraseMatcher
from .util import get_doc
from ..tokens import Doc
import pytest
@ -212,3 +213,24 @@ def test_operator_combos(matcher):
assert matches, (string, pattern_str)
else:
assert not matches, (string, pattern_str)
def test_matcher_end_zero_plus(matcher):
'''Test matcher works when patterns end with * operator. (issue 1450)'''
matcher = Matcher(matcher.vocab)
matcher.add(
"TSTEND",
None,
[
{'ORTH': "a"},
{'ORTH': "b", 'OP': "*"}
]
)
nlp = lambda string: Doc(matcher.vocab, words=string.split())
assert len(matcher(nlp(u'a'))) == 1
assert len(matcher(nlp(u'a b'))) == 1
assert len(matcher(nlp(u'a b'))) == 1
assert len(matcher(nlp(u'a c'))) == 1
assert len(matcher(nlp(u'a b c'))) == 1
assert len(matcher(nlp(u'a b b c'))) == 1
assert len(matcher(nlp(u'a b b'))) == 1

View File

@ -35,18 +35,18 @@ def vocab(en_vocab, vectors):
def test_init_vectors_with_data(strings, data):
v = Vectors(strings, data)
v = Vectors(strings, data=data)
assert v.shape == data.shape
def test_init_vectors_with_width(strings):
v = Vectors(strings, 3)
v = Vectors(strings, width=3)
for string in strings:
v.add(string)
assert v.shape == (len(strings), 3)
def test_get_vector(strings, data):
v = Vectors(strings, data)
v = Vectors(strings, data=data)
for string in strings:
v.add(string)
assert list(v[strings[0]]) == list(data[0])
@ -56,7 +56,7 @@ def test_get_vector(strings, data):
def test_set_vector(strings, data):
orig = data.copy()
v = Vectors(strings, data)
v = Vectors(strings, data=data)
for string in strings:
v.add(string)
assert list(v[strings[0]]) == list(orig[0])

View File

@ -27,8 +27,9 @@ cdef class Tokenizer:
cdef int _try_cache(self, hash_t key, Doc tokens) except -1
cdef int _tokenize(self, Doc tokens, unicode span, hash_t key) except -1
cdef unicode _split_affixes(self, Pool mem, unicode string, vector[LexemeC*] *prefixes,
vector[LexemeC*] *suffixes)
vector[LexemeC*] *suffixes, int* has_special)
cdef int _attach_tokens(self, Doc tokens, unicode string,
vector[LexemeC*] *prefixes, vector[LexemeC*] *suffixes) except -1
cdef int _save_cached(self, const TokenC* tokens, hash_t key, int n) except -1
cdef int _save_cached(self, const TokenC* tokens, hash_t key, int has_special,
int n) except -1

View File

@ -20,7 +20,8 @@ cdef class Tokenizer:
"""Segment text, and create Doc objects with the discovered segment
boundaries.
"""
def __init__(self, Vocab vocab, rules, prefix_search, suffix_search, infix_finditer, token_match=None):
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
suffix_search=None, infix_finditer=None, token_match=None):
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
vocab (Vocab): A storage container for lexical types.
@ -48,8 +49,9 @@ cdef class Tokenizer:
self.infix_finditer = infix_finditer
self.vocab = vocab
self._rules = {}
for chunk, substrings in sorted(rules.items()):
self.add_special_case(chunk, substrings)
if rules is not None:
for chunk, substrings in sorted(rules.items()):
self.add_special_case(chunk, substrings)
def __reduce__(self):
args = (self.vocab,
@ -148,14 +150,18 @@ cdef class Tokenizer:
cdef vector[LexemeC*] prefixes
cdef vector[LexemeC*] suffixes
cdef int orig_size
cdef int has_special
orig_size = tokens.length
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes)
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes,
&has_special)
self._attach_tokens(tokens, span, &prefixes, &suffixes)
self._save_cached(&tokens.c[orig_size], orig_key, tokens.length - orig_size)
self._save_cached(&tokens.c[orig_size], orig_key, has_special,
tokens.length - orig_size)
cdef unicode _split_affixes(self, Pool mem, unicode string,
vector[const LexemeC*] *prefixes,
vector[const LexemeC*] *suffixes):
vector[const LexemeC*] *suffixes,
int* has_special):
cdef size_t i
cdef unicode prefix
cdef unicode suffix
@ -174,6 +180,7 @@ cdef class Tokenizer:
if minus_pre and self._specials.get(hash_string(minus_pre)) != NULL:
string = minus_pre
prefixes.push_back(self.vocab.get(mem, prefix))
has_special[0] = 1
break
if self.token_match and self.token_match(string):
break
@ -185,6 +192,7 @@ cdef class Tokenizer:
if minus_suf and (self._specials.get(hash_string(minus_suf)) != NULL):
string = minus_suf
suffixes.push_back(self.vocab.get(mem, suffix))
has_special[0] = 1
break
if pre_len and suf_len and (pre_len + suf_len) <= len(string):
string = string[pre_len:-suf_len]
@ -197,6 +205,7 @@ cdef class Tokenizer:
string = minus_suf
suffixes.push_back(self.vocab.get(mem, suffix))
if string and (self._specials.get(hash_string(string)) != NULL):
has_special[0] = 1
break
return string
@ -256,11 +265,15 @@ cdef class Tokenizer:
preinc(it)
tokens.push_back(lexeme, False)
cdef int _save_cached(self, const TokenC* tokens, hash_t key, int n) except -1:
cdef int _save_cached(self, const TokenC* tokens, hash_t key,
int has_special, int n) except -1:
cdef int i
for i in range(n):
if tokens[i].lex.id == 0:
return 0
# See https://github.com/explosion/spaCy/issues/1250
if has_special:
return 0
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
cached.length = n
cached.is_lex = True

View File

@ -21,7 +21,7 @@ from .token cimport Token
from .printers import parse_tree
from ..lexeme cimport Lexeme, EMPTY_LEXEME
from ..typedefs cimport attr_t, flags_t
from ..attrs import intify_attrs
from ..attrs import intify_attrs, IDS
from ..attrs cimport attr_id_t
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER
from ..attrs cimport LENGTH, POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB, ENT_TYPE
@ -536,11 +536,15 @@ cdef class Doc:
@cython.boundscheck(False)
cpdef np.ndarray to_array(self, object py_attr_ids):
"""Given a list of M attribute IDs, export the tokens to a numpy
`ndarray` of shape `(N, M)`, where `N` is the length of the document.
The values will be 32-bit integers.
"""Export given token attributes to a numpy `ndarray`.
attr_ids (list[int]): A list of attribute ID ints.
If `attr_ids` is a sequence of M attributes, the output array will
be of shape `(N, M)`, where N is the length of the `Doc`
(in tokens). If `attr_ids` is a single attribute, the output shape will
be (N,). You can specify attributes by integer ID (e.g. spacy.attrs.LEMMA)
or string name (e.g. 'LEMMA' or 'lemma').
attr_ids (list[]): A list of attributes (int IDs or string names).
RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row
per word, and one column per attribute indicated in the input
`attr_ids`.
@ -553,15 +557,25 @@ cdef class Doc:
"""
cdef int i, j
cdef attr_id_t feature
cdef np.ndarray[attr_t, ndim=1] attr_ids
cdef np.ndarray[attr_t, ndim=2] output
# Handle scalar/list inputs of strings/ints for py_attr_ids
if not hasattr(py_attr_ids, '__iter__'):
py_attr_ids = [py_attr_ids]
# Allow strings, e.g. 'lemma' or 'LEMMA'
py_attr_ids = [(IDS[id_.upper()] if hasattr(id_, 'upper') else id_)
for id_ in py_attr_ids]
# Make an array from the attributes --- otherwise our inner loop is Python
# dict iteration.
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.uint64)
attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.uint64)
output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.uint64)
for i in range(self.length):
for j, feature in enumerate(attr_ids):
output[i, j] = get_token_attr(&self.c[i], feature)
return output
# Handle 1d case
return output if len(attr_ids) >= 2 else output.reshape((self.length,))
def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
"""Count the frequencies of a given attribute. Produces a dict of
@ -660,6 +674,54 @@ cdef class Doc:
self.is_tagged = bool(TAG in attrs or POS in attrs)
return self
def get_lca_matrix(self):
'''
Calculates the lowest common ancestor matrix
for a given Spacy doc.
Returns LCA matrix containing the integer index
of the ancestor, or -1 if no common ancestor is
found (ex if span excludes a necessary ancestor).
Apologies about the recursion, but the
impact on performance is negligible given
the natural limitations on the depth of a typical human sentence.
'''
# Efficiency notes:
#
# We can easily improve the performance here by iterating in Cython.
# To loop over the tokens in Cython, the easiest way is:
# for token in doc.c[:doc.c.length]:
# head = token + token.head
# Both token and head will be TokenC* here. The token.head attribute
# is an integer offset.
def __pairwise_lca(token_j, token_k, lca_matrix):
if lca_matrix[token_j.i][token_k.i] != -2:
return lca_matrix[token_j.i][token_k.i]
elif token_j == token_k:
lca_index = token_j.i
elif token_k.head == token_j:
lca_index = token_j.i
elif token_j.head == token_k:
lca_index = token_k.i
elif (token_j.head == token_j) and (token_k.head == token_k):
lca_index = -1
else:
lca_index = __pairwise_lca(token_j.head, token_k.head, lca_matrix)
lca_matrix[token_j.i][token_k.i] = lca_index
lca_matrix[token_k.i][token_j.i] = lca_index
return lca_index
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
lca_matrix.fill(-2)
for j in range(len(self)):
token_j = self[j]
for k in range(j, len(self)):
token_k = self[k]
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
lca_matrix[k][j] = lca_matrix[j][k]
return lca_matrix
def to_disk(self, path, **exclude):
"""Save the current state to a directory.

View File

@ -129,6 +129,7 @@ cdef class Span:
def _(self):
return Underscore(Underscore.span_extensions, self,
start=self.start_char, end=self.end_char)
def as_doc(self):
'''Create a Doc object view of the Span's data.
@ -177,6 +178,56 @@ cdef class Span:
return 0.0
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
def get_lca_matrix(self):
'''
Calculates the lowest common ancestor matrix
for a given Spacy span.
Returns LCA matrix containing the integer index
of the ancestor, or -1 if no common ancestor is
found (ex if span excludes a necessary ancestor).
Apologies about the recursion, but the
impact on performance is negligible given
the natural limitations on the depth of a typical human sentence.
'''
def __pairwise_lca(token_j, token_k, lca_matrix, margins):
offset = margins[0]
token_k_head = token_k.head if token_k.head.i in range(*margins) else token_k
token_j_head = token_j.head if token_j.head.i in range(*margins) else token_j
token_j_i = token_j.i - offset
token_k_i = token_k.i - offset
if lca_matrix[token_j_i][token_k_i] != -2:
return lca_matrix[token_j_i][token_k_i]
elif token_j == token_k:
lca_index = token_j_i
elif token_k_head == token_j:
lca_index = token_j_i
elif token_j_head == token_k:
lca_index = token_k_i
elif (token_j_head == token_j) and (token_k_head == token_k):
lca_index = -1
else:
lca_index = __pairwise_lca(token_j_head, token_k_head, lca_matrix, margins)
lca_matrix[token_j_i][token_k_i] = lca_index
lca_matrix[token_k_i][token_j_i] = lca_index
return lca_index
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
lca_matrix.fill(-2)
margins = [self.start, self.end]
for j in range(len(self)):
token_j = self[j]
for k in range(len(self)):
token_k = self[k]
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix, margins)
lca_matrix[k][j] = lca_matrix[j][k]
return lca_matrix
cpdef np.ndarray to_array(self, object py_attr_ids):
"""Given a list of M attribute IDs, export the tokens to a numpy
`ndarray` of shape `(N, M)`, where `N` is the length of the document.

View File

@ -127,6 +127,9 @@ cdef class Token:
i (int): The relative position of the token to get. Defaults to 1.
RETURNS (Token): The token at position `self.doc[self.i+i]`.
"""
if self.i+i < 0 or (self.i+i >= len(self.doc)):
msg = "Error accessing doc[%d].nbor(%d), for doc of length %d"
raise IndexError(msg % (self.i, i, len(self.doc)))
return self.doc[self.i+i]
def similarity(self, other):

View File

@ -32,22 +32,24 @@ cdef class Vectors:
cdef public object keys
cdef public int i
def __init__(self, strings, data_or_width=0):
def __init__(self, strings, width=0, data=None):
if isinstance(strings, StringStore):
self.strings = strings
else:
self.strings = StringStore()
for string in strings:
self.strings.add(string)
if isinstance(data_or_width, int):
self.data = data = numpy.zeros((len(strings), data_or_width),
dtype='f')
if data is not None:
self.data = numpy.asarray(data, dtype='f')
else:
data = data_or_width
self.data = numpy.zeros((len(self.strings), width), dtype='f')
self.i = 0
self.data = data
self.key2row = {}
self.keys = np.ndarray((self.data.shape[0],), dtype='uint64')
self.keys = numpy.zeros((self.data.shape[0],), dtype='uint64')
for i, string in enumerate(self.strings):
if i >= self.data.shape[0]:
break
self.add(self.strings[string], self.data[i])
def __reduce__(self):
return (Vectors, (self.strings, self.data))

View File

@ -62,12 +62,9 @@ cdef class Vocab:
if strings:
for string in strings:
_ = self[string]
for name in tag_map.keys():
if name:
self.strings.add(name)
self.lex_attr_getters = lex_attr_getters
self.morphology = Morphology(self.strings, tag_map, lemmatizer)
self.vectors = Vectors(self.strings)
self.vectors = Vectors(self.strings, width=0)
property lang:
def __get__(self):
@ -255,7 +252,7 @@ cdef class Vocab:
"""
if new_dim is None:
new_dim = self.vectors.data.shape[1]
self.vectors = Vectors(self.strings, new_dim)
self.vectors = Vectors(self.strings, width=new_dim)
def get_vector(self, orth):
"""Retrieve a vector for a word in the vocabulary.
@ -338,7 +335,7 @@ cdef class Vocab:
if self.vectors is None:
return None
else:
return self.vectors.to_bytes(exclude='strings.json')
return self.vectors.to_bytes()
getters = OrderedDict((
('strings', lambda: self.strings.to_bytes()),
@ -358,7 +355,7 @@ cdef class Vocab:
if self.vectors is None:
return None
else:
return self.vectors.from_bytes(b, exclude='strings')
return self.vectors.from_bytes(b)
setters = OrderedDict((
('strings', lambda b: self.strings.from_bytes(b)),
('lexemes', lambda b: self.lexemes_from_bytes(b)),
@ -400,6 +397,7 @@ cdef class Vocab:
cdef int j = 0
cdef SerializedLexemeC lex_data
chunk_size = sizeof(lex_data.data)
cdef void* ptr
cdef unsigned char* bytes_ptr = bytes_data
for i in range(0, len(bytes_data), chunk_size):
lexeme = <LexemeC*>self.mem.alloc(1, sizeof(LexemeC))
@ -407,6 +405,9 @@ cdef class Vocab:
lex_data.data[j] = bytes_ptr[i+j]
Lexeme.c_from_bytes(lexeme, lex_data)
ptr = self.strings._map.get(lexeme.orth)
if ptr == NULL:
continue
py_str = self.strings[lexeme.orth]
assert self.strings[py_str] == lexeme.orth, (py_str, lexeme.orth)
key = hash_string(py_str)

View File

@ -181,7 +181,7 @@ mixin codepen(slug, height, default_tab)
alt_file - [string] alternative file path used in footer and link button
height - [integer] height of code preview in px
mixin github(repo, file, alt_file, height)
mixin github(repo, file, alt_file, height, language)
- var branch = ALPHA ? "develop" : "master"
- var height = height || 250

View File

@ -37,6 +37,10 @@
+cell #[code WORK_OF_ART]
+cell Titles of books, songs, etc.
+row
+cell #[code LAW]
+cell Named documents made into laws.
+row
+cell #[code LANGUAGE]
+cell Any named language.

View File

@ -0,0 +1,46 @@
//- 💫 DOCS > API > ANNOTATION > TRAINING
p
| spaCy takes training data in JSON format. The built-in
| #[+api("cli#convert") #[code convert]] command helps you convert the
| #[code .conllu] format used by the
| #[+a("https://github.com/UniversalDependencies") Universal Dependencies corpora]
| to spaCy's training format.
+aside("Annotating entities")
| Named entities are provided in the #[+a("/api/annotation#biluo") BILUO]
| notation. Tokens outside an entity are set to #[code "O"] and tokens
| that are part of an entity are set to the entity label, prefixed by the
| BILUO marker. For example #[code "B-ORG"] describes the first token of
| a multi-token #[code ORG] entity and #[code "U-PERSON"] a single
| token representing a #[code PERSON] entity
+code("Example structure").
[{
"id": int, # ID of the document within the corpus
"paragraphs": [{ # list of paragraphs in the corpus
"raw": string, # raw text of the paragraph
"sentences": [{ # list of sentences in the paragraph
"tokens": [{ # list of tokens in the sentence
"id": int, # index of the token in the document
"dep": string, # dependency label
"head": int, # offset of token head relative to token index
"tag": string, # part-of-speech tag
"orth": string, # verbatim text of the token
"ner": string # BILUO label, e.g. "O" or "B-ORG"
}],
"brackets": [{ # phrase structure (NOT USED by current models)
"first": int, # index of first token
"last": int, # index of last token
"label": string # phrase label
}]
}]
}]
}]
p
| Here's an example of dependencies, part-of-speech tags and names
| entities, taken from the English Wall Street Journal portion of the Penn
| Treebank:
+github("spacy", "examples/training/training-data.json", false, false, "json")

View File

@ -154,13 +154,16 @@
"tokenizer": {
"title": "Tokenizer",
"teaser": "Segment text into words, punctuations marks etc.",
"tag": "class",
"source": "spacy/tokenizer.pyx"
},
"lemmatizer": {
"title": "Lemmatizer",
"tag": "class"
"teaser": "Assign the base forms of words.",
"tag": "class",
"source": "spacy/lemmatizer.py"
},
"tagger": {

View File

@ -101,31 +101,4 @@ p This document describes the target annotations spaCy is trained to predict.
+section("training")
+h(2, "json-input") JSON input format for training
+under-construction
p spaCy takes training data in the following format:
+code("Example structure").
doc: {
id: string,
paragraphs: [{
raw: string,
sents: [int],
tokens: [{
start: int,
tag: string,
head: int,
dep: string
}],
ner: [{
start: int,
end: int,
label: string
}],
brackets: [{
start: int,
end: int,
label: string
}]
}]
}
include _annotation/_training

View File

@ -336,28 +336,40 @@ p
+tag method
p
| Export the document annotations to a numpy array of shape #[code N*M]
| where #[code N] is the length of the document and #[code M] is the number
| of attribute IDs to export. The values will be 32-bit integers.
| Export given token attributes to a numpy #[code ndarray].
| If #[code attr_ids] is a sequence of #[code M] attributes,
| the output array will be of shape #[code (N, M)], where #[code N]
| is the length of the #[code Doc] (in tokens). If #[code attr_ids] is
| a single attribute, the output shape will be #[code (N,)]. You can
| specify attributes by integer ID (e.g. #[code spacy.attrs.LEMMA])
| or string name (e.g. 'LEMMA' or 'lemma'). The values will be 64-bit
| integers.
+aside-code("Example").
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
doc = nlp(text)
# All strings mapped to integers, for easy export to numpy
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
np_array = doc.to_array("POS")
+table(["Name", "Type", "Description"])
+row
+cell #[code attr_ids]
+cell list
+cell A list of attribute ID ints.
+cell list or int or string
+cell
| A list of attributes (int IDs or string names) or
| a single attribute (int ID or string name)
+row("foot")
+cell returns
+cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
+cell
| #[code.u-break numpy.ndarray[ndim=2, dtype='uint64']] or
| #[code.u-break numpy.ndarray[ndim=1, dtype='uint64']] or
+cell
| The exported attributes as a 2D numpy array, with one row per
| token and one column per attribute.
| token and one column per attribute (when #[code attr_ids] is a
| list), or as a 1D numpy array, with one item per attribute (when
| #[code attr_ids] is a single value).
+h(2, "from_array") Doc.from_array
+tag method

View File

@ -2,4 +2,159 @@
include ../_includes/_mixins
+under-construction
p
| The #[code Lemmatizer] supports simple part-of-speech-sensitive suffix
| rules and lookup tables.
+h(2, "init") Lemmatizer.__init__
+tag method
p Create a #[code Lemmatizer].
+aside-code("Example").
from spacy.lemmatizer import Lemmatizer
lemmatizer = Lemmatizer()
+table(["Name", "Type", "Description"])
+row
+cell #[code index]
+cell dict / #[code None]
+cell Inventory of lemmas in the language.
+row
+cell #[code exceptions]
+cell dict / #[code None]
+cell Mapping of string forms to lemmas that bypass the #[code rules].
+row
+cell #[code rules]
+cell dict / #[code None]
+cell List of suffix rewrite rules.
+row
+cell #[code lookup]
+cell dict / #[code None]
+cell Lookup table mapping string to their lemmas.
+row("foot")
+cell returns
+cell #[code Lemmatizer]
+cell The newly created object.
+h(2, "call") Lemmatizer.__call__
+tag method
p Lemmatize a string.
+aside-code("Example").
from spacy.lemmatizer import Lemmatizer
from spacy.lang.en import LEMMA_INDEX, LEMMA_EXC, LEMMA_RULES
lemmatizer = Lemmatizer(LEMMA_INDEX, LEMMA_EXC, LEMMA_RULES)
lemmas = lemmatizer(u'ducks', u'NOUN')
assert lemmas == [u'duck']
+table(["Name", "Type", "Description"])
+row
+cell #[code string]
+cell unicode
+cell The string to lemmatize, e.g. the token text.
+row
+cell #[code univ_pos]
+cell unicode / int
+cell The token's universal part-of-speech tag.
+row
+cell #[code morphology]
+cell dict / #[code None]
+cell
| Morphological features following the
| #[+a("http://universaldependencies.org/") Universal Dependencies]
| scheme.
+row("foot")
+cell returns
+cell list
+cell The available lemmas for the string.
+h(2, "lookup") Lemmatizer.lookup
+tag method
+tag-new(2)
p
| Look up a lemma in the lookup table, if available. If no lemma is found,
| the original string is returned. Languages can provide a
| #[+a("/usage/adding-languages#lemmatizer") lookup table] via the
| #[code lemma_lookup] variable, set on the individual #[code Language]
| class.
+aside-code("Example").
lookup = {u'going': u'go'}
lemmatizer = Lemmatizer(lookup=lookup)
assert lemmatizer.lookup(u'going') == u'go'
+table(["Name", "Type", "Description"])
+row
+cell #[code string]
+cell unicode
+cell The string to look up.
+row("foot")
+cell returns
+cell unicode
+cell The lemma if the string was found, otherwise the original string.
+h(2, "is_base_form") Lemmatizer.is_base_form
+tag method
p
| Check whether we're dealing with an uninflected paradigm, so we can
| avoid lemmatization entirely.
+aside-code("Example").
pos = 'verb'
morph = {'VerbForm': 'inf'}
is_base_form = lemmatizer.is_base_form(pos, morph)
assert is_base_form == True
+table(["Name", "Type", "Description"])
+row
+cell #[code univ_pos]
+cell unicode / int
+cell The token's universal part-of-speech tag.
+row
+cell #[code morphology]
+cell dict
+cell The token's morphological features.
+row("foot")
+cell returns
+cell bool
+cell
| Whether the token's part-of-speech tag and morphological features
| describe a base form.
+h(2, "attributes") Attributes
+table(["Name", "Type", "Description"])
+row
+cell #[code index]
+cell dict / #[code None]
+cell Inventory of lemmas in the language.
+row
+cell #[code exc]
+cell dict / #[code None]
+cell Mapping of string forms to lemmas that bypass the #[code rules].
+row
+cell #[code rules]
+cell dict / #[code None]
+cell List of suffix rewrite rules.
+row
+cell #[code lookup_table]
+tag-new(2)
+cell dict / #[code None]
+cell The lemma lookup table, if available.

View File

@ -284,7 +284,7 @@ p Retokenize the document, such that the span is merged into a single token.
+aside-code("Example").
doc = nlp(u'I like New York in Autumn.')
span = doc[2:3]
span = doc[2:4]
span.merge()
assert len(doc) == 6
assert doc[2].text == 'New York'
@ -302,6 +302,25 @@ p Retokenize the document, such that the span is merged into a single token.
+cell #[code Token]
+cell The newly merged token.
+h(2, "as_doc") Span.as_doc
p
| Create a #[code Doc] object view of the #[code Span]'s data. Mostly
| useful for C-typed interfaces.
+aside-code("Example").
doc = nlp(u'I like New York in Autumn.')
span = doc[2:4]
doc2 = span.as_doc()
assert doc2.text == 'New York'
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell #[code Doc]
+cell A #[code Doc] object of the #[code Span]'s content.
+h(2, "root") Span.root
+tag property
+tag-model("parse")

View File

@ -586,6 +586,16 @@ p The L2 norm of the token's vector representation.
+cell bool
+cell Is the token punctuation?
+row
+cell #[code is_left_punct]
+cell bool
+cell Is the token a left punctuation mark, e.g. #[code (]?
+row
+cell #[code is_right_punct]
+cell bool
+cell Is the token a right punctuation mark, e.g. #[code )]?
+row
+cell #[code is_space]
+cell bool
@ -593,6 +603,16 @@ p The L2 norm of the token's vector representation.
| Does the token consist of whitespace characters? Equivalent to
| #[code token.text.isspace()].
+row
+cell #[code is_bracket]
+cell bool
+cell Is the token a bracket?
+row
+cell #[code is_quote]
+cell bool
+cell Is the token a quotation mark?
+row
+cell #[code like_url]
+cell bool

View File

@ -12,7 +12,7 @@ p
p
| Create a new vector store. To keep the vector table empty, pass
| #[code data_or_width=0]. You can also create the vector table and add
| #[code width=0]. You can also create the vector table and add
| vectors one by one, or set the vector values directly on initialisation.
+aside-code("Example").
@ -21,11 +21,11 @@ p
empty_vectors = Vectors(StringStore())
vectors = Vectors([u'cat'], 300)
vectors = Vectors([u'cat'], width=300)
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
vector_table = numpy.zeros((3, 300), dtype='f')
vectors = Vectors(StringStore(), vector_table)
vectors = Vectors(StringStore(), data=vector_table)
+table(["Name", "Type", "Description"])
+row
@ -36,9 +36,12 @@ p
| that maps strings to hash values, and vice versa.
+row
+cell #[code data_or_width]
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']] or int
+cell Vector data or number of dimensions.
+cell #[code data]
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+row
+cell #[code width]
+cell Number of dimensions.
+row("foot")
+cell returns

View File

@ -63,7 +63,6 @@ code
padding: 0.2rem 0.4rem
border-radius: 0.25rem
font-family: $font-code
white-space: nowrap
margin: 0
box-decoration-break: clone
white-space: nowrap

View File

@ -14,9 +14,6 @@
width: 100%
box-shadow: $box-shadow
//@include breakpoint(min, md)
// position: fixed
&.is-fixed
animation: slideInDown 0.5s ease-in-out
position: fixed

View File

@ -1,3 +1,7 @@
//- 💫 DOCS > USAGE > TRAINING > TAGGER & PARSER
+under-construction
+h(3, "training-json") JSON format for training
include ../../api/_annotation/_training