rename init_tok2vec to resume

This commit is contained in:
svlandeg 2020-06-03 22:00:25 +02:00
parent 4ed6278663
commit 07886a3de3
2 changed files with 37 additions and 26 deletions

View File

@ -46,7 +46,6 @@ learn_rate = 0.001
[pretraining]
max_epochs = 1000
start_epoch = 0
min_length = 5
max_length = 500
dropout = 0.2
@ -54,7 +53,6 @@ n_save_every = null
batch_size = 3000
seed = ${training:seed}
use_pytorch_for_gpu_memory = ${training:use_pytorch_for_gpu_memory}
init_tok2vec = null
[pretraining.model]
@architectures = "spacy.HashEmbedCNN.v1"

View File

@ -16,7 +16,6 @@ from ..tokens import Doc
from ..attrs import ID, HEAD
from .. import util
from ..gold import Example
from .deprecated_pretrain import _load_pretrained_tok2vec # TODO
@plac.annotations(
@ -26,6 +25,9 @@ from .deprecated_pretrain import _load_pretrained_tok2vec # TODO
output_dir=("Directory to write models to on each epoch", "positional", None, Path),
config_path=("Path to config file", "positional", None, Path),
use_gpu=("Use GPU", "option", "g", int),
resume_path=("Path to pretrained weights from which to resume pretraining", "option","r", Path),
epoch_resume=("The epoch to resume counting from when using '--resume_path'. Prevents unintended overwriting of existing weight files.","option", "er", int),
# fmt: on
)
def pretrain(
@ -34,6 +36,8 @@ def pretrain(
config_path,
output_dir,
use_gpu=-1,
resume_path=None,
epoch_resume=None,
):
"""
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
@ -66,8 +70,16 @@ def pretrain(
use_pytorch_for_gpu_memory()
if output_dir.exists() and [p for p in output_dir.iterdir()]:
if resume_path:
msg.warn(
"Output directory is not empty",
"Output directory is not empty. ",
"If you're resuming a run from a previous "
"model, the old models for the consecutive epochs will be overwritten "
"with the new ones.",
)
else:
msg.warn(
"Output directory is not empty. ",
"It is better to use an empty directory or refer to a new output path, "
"then the new directory will be created for you.",
)
@ -92,7 +104,7 @@ def pretrain(
msg.good("Loaded input texts")
random.shuffle(texts)
else: # reading from stdin
msg.text("Reading input text from stdin...")
msg.info("Reading input text from stdin...")
texts = srsly.read_jsonl("-")
with msg.loading(f"Loading model '{vectors_model}'..."):
@ -101,35 +113,36 @@ def pretrain(
tok2vec = pretrain_config["model"]
model = create_pretraining_model(nlp, tok2vec)
optimizer = pretrain_config["optimizer"]
init_tok2vec = pretrain_config["init_tok2vec"]
epoch_start = pretrain_config["epoch_start"]
# Load in pretrained weights - TODO test
if init_tok2vec is not None:
components = _load_pretrained_tok2vec(nlp, init_tok2vec)
msg.text(f"Loaded pretrained tok2vec for: {components}")
# Load in pretrained weights to resume from
if resume_path is not None:
msg.info(f"Resume training tok2vec from: {resume_path}")
with resume_path.open("rb") as file_:
weights_data = file_.read()
model.get_ref("tok2vec").from_bytes(weights_data)
# Parse the epoch number from the given weight file
model_name = re.search(r"model\d+\.bin", str(init_tok2vec))
model_name = re.search(r"model\d+\.bin", str(resume_path))
if model_name:
# Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
epoch_start = int(model_name.group(0)[5:][:-4]) + 1
epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
msg.info(f"Resuming from epoch: {epoch_resume}")
else:
if not epoch_start:
if not epoch_resume:
msg.fail(
"You have to use the epoch_start setting when using a renamed weight file for init_tok2vec",
"You have to use the --epoch_resume setting when using a renamed weight file for --resume_path",
exits=True,
)
elif epoch_start < 0:
elif epoch_resume < 0:
msg.fail(
f"The setting epoch_start has to be greater or equal to 0. {epoch_start} is invalid",
f"The setting --epoch_resume has to be greater or equal to 0. {epoch_resume} is invalid",
exits=True,
)
else:
# Without 'init-tok2vec' the 'epoch_start' setting is ignored
epoch_start = 0
# Without 'resume_path' the 'epoch_resume' setting is ignored
epoch_resume = 0
tracker = ProgressTracker(frequency=10000)
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_start}")
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
@ -149,7 +162,7 @@ def pretrain(
skip_counter = 0
loss_func = pretrain_config["loss_func"]
for epoch in range(epoch_start, pretrain_config["max_epochs"]):
for epoch in range(epoch_resume, pretrain_config["max_epochs"]):
examples = [Example(doc=text) for text in texts]
batches = util.minibatch_by_words(examples, size=pretrain_config["batch_size"])
for batch_id, batch in enumerate(batches):