mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-17 19:52:18 +03:00
Remove config from coref tests
This was necessary when the tok2vec_size option was necessary.
This commit is contained in:
parent
1baa334b8a
commit
07e8556cc3
|
@ -36,9 +36,6 @@ TRAIN_DATA = [
|
|||
# fmt: on
|
||||
|
||||
|
||||
CONFIG = {"model": {"@architectures": "spacy.Coref.v1", "tok2vec_size": 64}}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nlp():
|
||||
return English()
|
||||
|
@ -67,7 +64,7 @@ def test_not_initialized(nlp):
|
|||
|
||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||
def test_initialized(nlp):
|
||||
nlp.add_pipe("coref", config=CONFIG)
|
||||
nlp.add_pipe("coref")
|
||||
nlp.initialize()
|
||||
assert nlp.pipe_names == ["coref"]
|
||||
text = "She gave me her pen."
|
||||
|
@ -79,7 +76,7 @@ def test_initialized(nlp):
|
|||
|
||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||
def test_initialized_short(nlp):
|
||||
nlp.add_pipe("coref", config=CONFIG)
|
||||
nlp.add_pipe("coref")
|
||||
nlp.initialize()
|
||||
assert nlp.pipe_names == ["coref"]
|
||||
text = "Hi there"
|
||||
|
@ -89,7 +86,7 @@ def test_initialized_short(nlp):
|
|||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||
def test_coref_serialization(nlp):
|
||||
# Test that the coref component can be serialized
|
||||
nlp.add_pipe("coref", last=True, config=CONFIG)
|
||||
nlp.add_pipe("coref", last=True)
|
||||
nlp.initialize()
|
||||
assert nlp.pipe_names == ["coref"]
|
||||
text = "She gave me her pen."
|
||||
|
@ -111,7 +108,7 @@ def test_overfitting_IO(nlp):
|
|||
for text, annot in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
|
||||
|
||||
nlp.add_pipe("coref", config=CONFIG)
|
||||
nlp.add_pipe("coref")
|
||||
optimizer = nlp.initialize()
|
||||
test_text = TRAIN_DATA[0][0]
|
||||
doc = nlp(test_text)
|
||||
|
@ -166,7 +163,7 @@ def test_tokenization_mismatch(nlp):
|
|||
|
||||
train_examples.append(eg)
|
||||
|
||||
nlp.add_pipe("coref", config=CONFIG)
|
||||
nlp.add_pipe("coref")
|
||||
optimizer = nlp.initialize()
|
||||
test_text = TRAIN_DATA[0][0]
|
||||
doc = nlp(test_text)
|
||||
|
@ -228,7 +225,7 @@ def test_whitespace_mismatch(nlp):
|
|||
eg.predicted = nlp.make_doc(" " + text)
|
||||
train_examples.append(eg)
|
||||
|
||||
nlp.add_pipe("coref", config=CONFIG)
|
||||
nlp.add_pipe("coref")
|
||||
optimizer = nlp.initialize()
|
||||
test_text = TRAIN_DATA[0][0]
|
||||
doc = nlp(test_text)
|
||||
|
|
|
@ -44,8 +44,6 @@ TRAIN_DATA = [
|
|||
]
|
||||
# fmt: on
|
||||
|
||||
CONFIG = {"model": {"@architectures": "spacy.SpanPredictor.v1", "tok2vec_size": 64}}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nlp():
|
||||
|
@ -76,7 +74,7 @@ def test_not_initialized(nlp):
|
|||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||
def test_span_predictor_serialization(nlp):
|
||||
# Test that the span predictor component can be serialized
|
||||
nlp.add_pipe("span_predictor", last=True, config=CONFIG)
|
||||
nlp.add_pipe("span_predictor", last=True)
|
||||
nlp.initialize()
|
||||
assert nlp.pipe_names == ["span_predictor"]
|
||||
text = "She gave me her pen."
|
||||
|
@ -109,7 +107,7 @@ def test_overfitting_IO(nlp):
|
|||
pred.spans[key] = [pred[span.start : span.end] for span in spans]
|
||||
|
||||
train_examples.append(eg)
|
||||
nlp.add_pipe("span_predictor", config=CONFIG)
|
||||
nlp.add_pipe("span_predictor")
|
||||
optimizer = nlp.initialize()
|
||||
test_text = TRAIN_DATA[0][0]
|
||||
doc = nlp(test_text)
|
||||
|
@ -173,7 +171,7 @@ def test_tokenization_mismatch(nlp):
|
|||
|
||||
train_examples.append(eg)
|
||||
|
||||
nlp.add_pipe("span_predictor", config=CONFIG)
|
||||
nlp.add_pipe("span_predictor")
|
||||
optimizer = nlp.initialize()
|
||||
test_text = TRAIN_DATA[0][0]
|
||||
doc = nlp(test_text)
|
||||
|
@ -218,7 +216,7 @@ def test_whitespace_mismatch(nlp):
|
|||
eg.predicted = nlp.make_doc(" " + text)
|
||||
train_examples.append(eg)
|
||||
|
||||
nlp.add_pipe("span_predictor", config=CONFIG)
|
||||
nlp.add_pipe("span_predictor")
|
||||
optimizer = nlp.initialize()
|
||||
test_text = TRAIN_DATA[0][0]
|
||||
doc = nlp(test_text)
|
||||
|
|
Loading…
Reference in New Issue
Block a user