Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2018-12-10 05:35:01 +00:00
commit 0994dc50d8
25 changed files with 280 additions and 301 deletions

View File

@ -5,11 +5,11 @@ dist/spacy.pex : spacy/*.py* spacy/*/*.py*
python3.6 -m venv env3.6
source env3.6/bin/activate
env3.6/bin/pip install wheel
env3.6/bin/pip install -r requirements.txt --no-cache-dir --no-binary :all:
env3.6/bin/pip install -r requirements.txt --no-cache-dir
env3.6/bin/python setup.py build_ext --inplace
env3.6/bin/python setup.py sdist
env3.6/bin/python setup.py bdist_wheel
env3.6/bin/python -m pip install pex
env3.6/bin/python -m pip install pex==1.5.3
env3.6/bin/pex pytest dist/*.whl -e spacy -o dist/spacy-$(sha).pex
cp dist/spacy-$(sha).pex dist/spacy.pex
chmod a+rx dist/spacy.pex

View File

@ -4,7 +4,7 @@ preshed>=2.0.1,<2.1.0
thinc==7.0.0.dev6
blis>=0.2.2,<0.3.0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.0.8,<1.1.0
wasabi>=0.0.12,<1.1.0
srsly>=0.0.5,<1.1.0
# Third party dependencies
numpy>=1.15.0

View File

@ -13,12 +13,12 @@ from setuptools import Extension, setup, find_packages
def is_new_osx():
'''Check whether we're on OSX >= 10.10'''
"""Check whether we're on OSX >= 10.10"""
name = distutils.util.get_platform()
if sys.platform != 'darwin':
if sys.platform != "darwin":
return False
elif name.startswith('macosx-10'):
minor_version = int(name.split('-')[1].split('.')[1])
elif name.startswith("macosx-10"):
minor_version = int(name.split("-")[1].split(".")[1])
if minor_version >= 7:
return True
else:
@ -27,7 +27,6 @@ def is_new_osx():
return False
PACKAGE_DATA = {"": ["*.pyx", "*.pxd", "*.txt", "*.tokens"]}
@ -84,7 +83,6 @@ if is_new_osx():
LINK_OPTIONS["other"].append("-nodefaultlibs")
USE_OPENMP_DEFAULT = "0" if sys.platform != "darwin" else None
if os.environ.get("USE_OPENMP", USE_OPENMP_DEFAULT) == "1":
if sys.platform == "darwin":
@ -232,7 +230,7 @@ def setup_package():
"regex==2018.01.10",
"requests>=2.13.0,<3.0.0",
"jsonschema>=2.6.0,<3.0.0",
"wasabi>=0.0.8,<1.1.0",
"wasabi>=0.0.12,<1.1.0",
"srsly>=0.0.5,<1.1.0",
'pathlib==1.0.1; python_version < "3.4"',
],

View File

@ -271,7 +271,7 @@ def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
def Tok2Vec(width, embed_size, **kwargs):
pretrained_vectors = kwargs.get("pretrained_vectors", None)
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 2)
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
subword_features = kwargs.get("subword_features", True)
conv_depth = kwargs.get("conv_depth", 4)
bilstm_depth = kwargs.get("bilstm_depth", 0)

View File

@ -1,105 +0,0 @@
# coding: utf8
from __future__ import unicode_literals
# fmt: off
class Messages(object):
M001 = ("Download successful but linking failed")
M002 = ("Creating a shortcut link for 'en' didn't work (maybe you "
"don't have admin permissions?), but you can still load the "
"model via its full package name: nlp = spacy.load('{name}')")
M003 = ("Server error ({code})")
M004 = ("Couldn't fetch {desc}. Please find a model for your spaCy "
"installation (v{version}), and download it manually. For more "
"details, see the documentation: https://spacy.io/usage/models")
M005 = ("Compatibility error")
M006 = ("No compatible models found for v{version} of spaCy.")
M007 = ("No compatible model found for '{name}' (spaCy v{version}).")
M008 = ("Can't locate model data")
M009 = ("The data should be located in {path}")
M010 = ("Can't find the spaCy data path to create model symlink")
M011 = ("Make sure a directory `/data` exists within your spaCy "
"installation and try again. The data directory should be "
"located here:")
M012 = ("Link '{name}' already exists")
M013 = ("To overwrite an existing link, use the --force flag.")
M014 = ("Can't overwrite symlink '{name}'")
M015 = ("This can happen if your data directory contains a directory or "
"file of the same name.")
M016 = ("Error: Couldn't link model to '{name}'")
M017 = ("Creating a symlink in spacy/data failed. Make sure you have the "
"required permissions and try re-running the command as admin, or "
"use a virtualenv. You can still import the model as a module and "
"call its load() method, or create the symlink manually.")
M018 = ("Linking successful")
M019 = ("You can now load the model via spacy.load('{name}')")
M020 = ("Can't find model meta.json")
M021 = ("Couldn't fetch compatibility table.")
M022 = ("Can't find spaCy v{version} in compatibility table")
M023 = ("Installed models (spaCy v{version})")
M024 = ("No models found in your current environment.")
M025 = ("Use the following commands to update the model packages:")
M026 = ("The following models are not available for spaCy "
"v{version}: {models}")
M027 = ("You may also want to overwrite the incompatible links using the "
"`python -m spacy link` command with `--force`, or remove them "
"from the data directory. Data path: {path}")
M028 = ("Input file not found")
M029 = ("Output directory not found")
M030 = ("Unknown format")
M031 = ("Can't find converter for {converter}")
M032 = ("Generated output file {name}")
M033 = ("Created {n_docs} documents")
M034 = ("Evaluation data not found")
M035 = ("Visualization output directory not found")
M036 = ("Generated {n} parses as HTML")
M037 = ("Can't find words frequencies file")
M038 = ("Sucessfully compiled vocab")
M039 = ("{entries} entries, {vectors} vectors")
M040 = ("Output directory not found")
M041 = ("Loaded meta.json from file")
M042 = ("Successfully created package '{name}'")
M043 = ("To build the package, run `python setup.py sdist` in this "
"directory.")
M044 = ("Package directory already exists")
M045 = ("Please delete the directory and try again, or use the `--force` "
"flag to overwrite existing directories.")
M046 = ("Generating meta.json")
M047 = ("Enter the package settings for your model. The following "
"information will be read from your model data: pipeline, vectors.")
M048 = ("No '{key}' setting found in meta.json")
M049 = ("This setting is required to build your package.")
M050 = ("Training data not found")
M051 = ("Development data not found")
M052 = ("Not a valid meta.json format")
M053 = ("Expected dict but got: {meta_type}")
M054 = ("No --lang specified, but tokenization required.")
M055 = ("Training pipeline: {pipeline}")
M056 = ("Starting with base model '{model}'")
M057 = ("Starting with blank model '{model}'")
M058 = ("Loading vector from model '{model}'")
M059 = ("Can't use multitask objective without '{pipe}' in the pipeline")
M060 = ("Counting training words (limit={limit})")
M061 = ("\nSaving model...")
M062 = ("Output directory is not empty.")
M063 = ("Incompatible arguments")
M064 = ("The -f and -c arguments are deprecated, and not compatible with "
"the -j argument, which should specify the same information. "
"Either merge the frequencies and clusters data into the "
"JSONL-formatted file (recommended), or use only the -f and -c "
"files, without the other lexical attributes.")
M065 = ("This can lead to unintended side effects when saving the model. "
"Please use an empty directory or a different path instead. If "
"the specified output path doesn't exist, the directory will be "
"created for you.")
M066 = ("Saved model to output directory")
M067 = ("Can't find lexical data")
M068 = ("Sucessfully compiled vocab and vectors, and saved model")
M069 = ("Unknown file type: '{name}'")
M070 = ("Supported file types: '{options}'")
M071 = ("Loaded pretrained tok2vec for: {components}")
M072 = ("Model language ('{model_lang}') doesn't match language specified "
"as `lang` argument ('{lang}') ")
# fmt: on

View File

@ -6,10 +6,8 @@ from pathlib import Path
from wasabi import Printer
import srsly
from ..compat import path2str
from .converters import conllu2json, conllubio2json, iob2json, conll_ner2json
from .converters import ner_jsonl2json
from ._messages import Messages
# Converters are matched by file extension. To add a converter, add a new
@ -56,18 +54,18 @@ def convert(
input_path = Path(input_file)
if file_type not in FILE_TYPES:
msg.fail(
Messages.M069.format(name=file_type),
Messages.M070.format(options=", ".join(FILE_TYPES)),
"Unknown file type: '{}'".format(file_type),
"Supported file types: '{}'".format(", ".join(FILE_TYPES)),
exits=1,
)
if not input_path.exists():
msg.fail(Messages.M028, input_path, exits=1)
msg.fail("Input file not found", input_path, exits=1)
if output_dir != "-" and not Path(output_dir).exists():
msg.fail(Messages.M029, output_dir, exits=1)
msg.fail("Output directory not found", output_dir, exits=1)
if converter == "auto":
converter = input_path.suffix[1:]
if converter not in CONVERTERS:
msg.fail(Messages.M030, Messages.M031.format(converter=converter), exits=1)
msg.fail("Can't find converter for {}".format(converter), exits=1)
# Use converter function to convert data
func = CONVERTERS[converter]
input_data = input_path.open("r", encoding="utf-8").read()
@ -80,10 +78,7 @@ def convert(
srsly.write_json(output_file, data)
elif file_type == "jsonl":
srsly.write_jsonl(output_file, data)
msg.good(
Messages.M032.format(name=path2str(output_file)),
Messages.M033.format(n_docs=len(data)),
)
msg.good("Generated output file ({} documents)".format(len(data)), output_file)
else:
# Print to stdout
if file_type == "json":

View File

@ -4,12 +4,11 @@ from __future__ import unicode_literals
import srsly
from ...util import get_lang_class
from .._messages import Messages
def ner_jsonl2json(input_data, lang=None, n_sents=10, use_morphology=False):
if lang is None:
raise ValueError(Messages.M054)
raise ValueError("No --lang specified, but tokenization required")
json_docs = []
input_tuples = [srsly.json_loads(line) for line in input_data]
nlp = get_lang_class(lang)()

View File

@ -12,7 +12,6 @@ from ..gold import GoldCorpus, read_json_object
from ..util import load_model, get_lang_class
# from .schemas import get_schema, validate_json
from ._messages import Messages
# Minimum number of expected occurences of label in data to train new label
@ -58,9 +57,9 @@ def debug_data(
# Make sure all files and paths exists if they are needed
if not train_path.exists():
msg.fail(Messages.M050, train_path, exits=1)
msg.fail("Training data not found", train_path, exits=1)
if not dev_path.exists():
msg.fail(Messages.M051, dev_path, exits=1)
msg.fail("Development data not found", dev_path, exits=1)
# Initialize the model and pipeline
pipeline = [p.strip() for p in pipeline.split(",")]
@ -72,9 +71,7 @@ def debug_data(
msg.divider("Data format validation")
# Load the data in one might take a while but okay in this case
with msg.loading("Loading {}...".format(train_path.parts[-1])):
train_data = _load_file(train_path, msg)
with msg.loading("Loading {}...".format(dev_path.parts[-1])):
dev_data = _load_file(dev_path, msg)
# Validate data format using the JSON schema
@ -172,6 +169,7 @@ def debug_data(
existing_labels = [l for l in labels if l in model_labels]
has_low_data_warning = False
has_no_neg_warning = False
has_ws_ents_error = False
msg.divider("Named Entity Recognition")
msg.info(
@ -201,6 +199,10 @@ def debug_data(
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
)
if gold_data["ws_ents"]:
msg.fail("{} invalid whitespace entity spans".format(gold_data["ws_ents"]))
has_ws_ents_error = True
for label in new_labels:
if label_counts[label] <= NEW_LABEL_THRESHOLD:
msg.warn(
@ -222,6 +224,8 @@ def debug_data(
msg.good("Good amount of examples for all labels")
if not has_no_neg_warning:
msg.good("Examples without occurences available for all labels")
if not has_ws_ents_error:
msg.good("No entities consisting of or starting/ending with whitespace")
if has_low_data_warning:
msg.text(
@ -236,6 +240,11 @@ def debug_data(
"type.",
show=verbose,
)
if has_ws_ents_error:
msg.text(
"As of spaCy v2.1.0, entity spans consisting of or starting/ending "
"with whitespace characters are considered invalid."
)
if "textcat" in pipeline:
msg.divider("Text Classification")
@ -321,10 +330,12 @@ def debug_data(
def _load_file(file_path, msg):
file_name = file_path.parts[-1]
if file_path.suffix == ".json":
with msg.loading("Loading {}...".format(file_name)):
data = srsly.read_json(file_path)
msg.good("Loaded {}".format(file_name))
return data
elif file_path.suffix == ".jsonl":
with msg.loading("Loading {}...".format(file_name)):
data = srsly.read_jsonl(file_path)
msg.good("Loaded {}".format(file_name))
return data
@ -342,6 +353,7 @@ def _compile_gold(train_docs, pipeline):
"tags": Counter(),
"deps": Counter(),
"words": Counter(),
"ws_ents": 0,
"n_words": 0,
"texts": set(),
}
@ -350,7 +362,10 @@ def _compile_gold(train_docs, pipeline):
data["n_words"] += len(gold.words)
data["texts"].add(doc.text)
if "ner" in pipeline:
for label in gold.ner:
for i, label in enumerate(gold.ner):
if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
# "Illegal" whitespace entity
data["ws_ents"] += 1
if label.startswith(("B-", "U-")):
combined_label = label.split("-")[1]
data["ner"][combined_label] += 1
@ -371,18 +386,6 @@ def _format_labels(labels, counts=False):
return ", ".join(["'{}'".format(l) for l in labels])
def _get_ner_counts(data):
counter = Counter()
for doc, gold in data:
for label in gold.ner:
if label.startswith(("B-", "U-")):
combined_label = label.split("-")[1]
counter[combined_label] += 1
elif label == "-":
counter["-"] += 1
return counter
def _get_examples_without_label(data, label):
count = 0
for doc, gold in data:

View File

@ -8,7 +8,6 @@ import subprocess
import sys
from wasabi import Printer
from ._messages import Messages
from .link import link
from ..util import get_package_path
from .. import about
@ -50,15 +49,24 @@ def download(model, direct=False, *pip_args):
# Dirty, but since spacy.download and the auto-linking is
# mostly a convenience wrapper, it's best to show a success
# message and loading instructions, even if linking fails.
msg.warn(Messages.M002.format(name=model_name), Messages.M001)
msg.warn(
"Download successful but linking failed",
"Creating a shortcut link for 'en' didn't work (maybe you "
"don't have admin permissions?), but you can still load the "
"model via its full package name: "
"nlp = spacy.load('{}')".format(model_name),
)
def get_json(url, desc):
r = requests.get(url)
if r.status_code != 200:
msg.fail(
Messages.M003.format(code=r.status_code),
Messages.M004.format(desc=desc, version=about.__version__),
"Server error ({})".format(r.status_code),
"Couldn't fetch {}. Please find a model for your spaCy "
"installation (v{}), and download it manually. For more "
"details, see the documentation: "
"https://spacy.io/usage/models".format(desc, about.__version__),
exits=1,
)
return r.json()
@ -70,7 +78,7 @@ def get_compatibility():
comp_table = get_json(about.__compatibility__, "compatibility table")
comp = comp_table["spacy"]
if version not in comp:
msg.fail(Messages.M005, Messages.M006.format(version=version), exits=1)
msg.fail("No compatible models found for v{} of spaCy".format(version), exits=1)
return comp[version]
@ -78,8 +86,8 @@ def get_version(model, comp):
model = model.rsplit(".dev", 1)[0]
if model not in comp:
msg.fail(
Messages.M005,
Messages.M007.format(name=model, version=about.__version__),
"No compatible model found for '{}' "
"(spaCy v{}).".format(model, about.__version__),
exits=1,
)
return comp[model][0]

View File

@ -5,7 +5,6 @@ import plac
from timeit import default_timer as timer
from wasabi import Printer
from ._messages import Messages
from ..gold import GoldCorpus
from .. import util
from .. import displacy
@ -39,9 +38,9 @@ def evaluate(
data_path = util.ensure_path(data_path)
displacy_path = util.ensure_path(displacy_path)
if not data_path.exists():
msg.fail(Messages.M034, data_path, exits=1)
msg.fail("Evaluation data not found", data_path, exits=1)
if displacy_path and not displacy_path.exists():
msg.fail(Messages.M035, displacy_path, exits=1)
msg.fail("Visualization output directory not found", displacy_path, exits=1)
corpus = GoldCorpus(data_path, data_path)
nlp = util.load_model(model)
dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
@ -75,7 +74,7 @@ def evaluate(
deps=render_deps,
ents=render_ents,
)
msg.good(Messages.M036.format(n=displacy_limit), displacy_path)
msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path)
def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
@ -90,39 +89,3 @@ def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=T
docs[:limit], style="dep", page=True, options={"compact": True}
)
file_.write(html)
def print_progress(itn, losses, dev_scores, wps=0.0):
scores = {}
for col in [
"dep_loss",
"tag_loss",
"uas",
"tags_acc",
"token_acc",
"ents_p",
"ents_r",
"ents_f",
"wps",
]:
scores[col] = 0.0
scores["dep_loss"] = losses.get("parser", 0.0)
scores["ner_loss"] = losses.get("ner", 0.0)
scores["tag_loss"] = losses.get("tagger", 0.0)
scores.update(dev_scores)
scores["wps"] = wps
tpl = "\t".join(
(
"{:d}",
"{dep_loss:.3f}",
"{ner_loss:.3f}",
"{uas:.3f}",
"{ents_p:.3f}",
"{ents_r:.3f}",
"{ents_f:.3f}",
"{tags_acc:.3f}",
"{token_acc:.3f}",
"{wps:.1f}",
)
)
print(tpl.format(itn, **scores))

View File

@ -7,7 +7,6 @@ from pathlib import Path
from wasabi import Printer
import srsly
from ._messages import Messages
from ..compat import path2str, basestring_, unicode_
from .. import util
from .. import about
@ -32,7 +31,7 @@ def info(model=None, markdown=False, silent=False):
model_path = util.get_data_path() / model
meta_path = model_path / "meta.json"
if not meta_path.is_file():
msg.fail(Messages.M020, meta_path, exits=1)
msg.fail("Can't find model meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path)
if model_path.resolve() != model_path:
meta["link"] = path2str(model_path)

View File

@ -14,7 +14,6 @@ import zipfile
import srsly
from wasabi import Printer
from ._messages import Messages
from ..vectors import Vectors
from ..errors import Errors, Warnings, user_warning
from ..util import ensure_path, get_lang_class
@ -58,14 +57,21 @@ def init_model(
settings.append("-f")
if clusters_loc:
settings.append("-c")
msg.warn(Messages.M063, Messages.M064)
msg.warn(
"Incompatible arguments",
"The -f and -c arguments are deprecated, and not compatible "
"with the -j argument, which should specify the same "
"information. Either merge the frequencies and clusters data "
"into the JSONL-formatted file (recommended), or use only the "
"-f and -c files, without the other lexical attributes.",
)
jsonl_loc = ensure_path(jsonl_loc)
lex_attrs = srsly.read_jsonl(jsonl_loc)
else:
clusters_loc = ensure_path(clusters_loc)
freqs_loc = ensure_path(freqs_loc)
if freqs_loc is not None and not freqs_loc.exists():
msg.fail(Messages.M037, freqs_loc, exits=1)
msg.fail("Can't find words frequencies file", freqs_loc, exits=1)
lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc)
with msg.loading("Creating model..."):
@ -75,7 +81,10 @@ def init_model(
add_vectors(nlp, vectors_loc, prune_vectors)
vec_added = len(nlp.vocab.vectors)
lex_added = len(nlp.vocab)
msg.good(Messages.M038, Messages.M039.format(entries=lex_added, vectors=vec_added))
msg.good(
"Sucessfully compiled vocab",
"{} entries, {} vectors".format(lex_added, vec_added),
)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)

View File

@ -5,7 +5,6 @@ import plac
from pathlib import Path
from wasabi import Printer
from ._messages import Messages
from ..compat import symlink_to, path2str
from .. import util
@ -28,29 +27,52 @@ def link(origin, link_name, force=False, model_path=None):
model_path = Path(origin) if model_path is None else Path(model_path)
if not model_path.exists():
msg.fail(
Messages.M008, Messages.M009.format(path=path2str(model_path)), exits=1
"Can't locate model data",
"The data should be located in {}".format(path2str(model_path)),
exits=1,
)
data_path = util.get_data_path()
if not data_path or not data_path.exists():
spacy_loc = Path(__file__).parent.parent
msg.fail(Messages.M010, Messages.M011.format(path=spacy_loc), exits=1)
msg.fail(
"Can't find the spaCy data path to create model symlink",
"Make sure a directory `/data` exists within your spaCy "
"installation and try again. The data directory should be located "
"here:".format(path=spacy_loc),
exits=1,
)
link_path = util.get_data_path() / link_name
if link_path.is_symlink() and not force:
msg.fail(Messages.M012.format(name=link_name), Messages.M013, exits=1)
msg.fail(
"Link '{}' already exists".format(link_name),
"To overwrite an existing link, use the --force flag",
exits=1,
)
elif link_path.is_symlink(): # does a symlink exist?
# NB: It's important to check for is_symlink here and not for exists,
# because invalid/outdated symlinks would return False otherwise.
link_path.unlink()
elif link_path.exists(): # does it exist otherwise?
# NB: Check this last because valid symlinks also "exist".
msg.fail(Messages.M014.format(name=link_name), Messages.M015, exits=1)
msg.fail(
"Can't overwrite symlink '{}'".format(link_name),
"This can happen if your data directory contains a directory or "
"file of the same name.",
exits=1,
)
details = "%s --> %s" % (path2str(model_path), path2str(link_path))
try:
symlink_to(link_path, model_path)
except: # noqa: E722
# This is quite dirty, but just making sure other errors are caught.
msg.fail(Messages.M016.format(name=link_name), Messages.M017)
msg.fail(
"Couldn't link model to '{}'".format(link_name),
"Creating a symlink in spacy/data failed. Make sure you have the "
"required permissions and try re-running the command as admin, or "
"use a virtualenv. You can still import the model as a module and "
"call its load() method, or create the symlink manually.",
)
msg.text(details)
raise
msg.good(Messages.M018, details)
msg.text(Messages.M019.format(name=link_name))
msg.good("Linking successful", details)
msg.text("You can now load the model via spacy.load('{}')".format(link_name))

View File

@ -7,7 +7,6 @@ from pathlib import Path
from wasabi import Printer, get_raw_input
import srsly
from ._messages import Messages
from ..compat import path2str
from .. import util
from .. import about
@ -33,22 +32,26 @@ def package(input_dir, output_dir, meta_path=None, create_meta=False, force=Fals
output_path = util.ensure_path(output_dir)
meta_path = util.ensure_path(meta_path)
if not input_path or not input_path.exists():
msg.fail(Messages.M008, input_path, exits=1)
msg.fail("Can't locate model data", input_path, exits=1)
if not output_path or not output_path.exists():
msg.fail(Messages.M040, output_path, exits=1)
msg.fail("Output directory not found", output_path, exits=1)
if meta_path and not meta_path.exists():
msg.fail(Messages.M020, meta_path, exits=1)
msg.fail("Can't find model meta.json", meta_path, exits=1)
meta_path = meta_path or input_path / "meta.json"
if meta_path.is_file():
meta = srsly.read_json(meta_path)
if not create_meta: # only print if user doesn't want to overwrite
msg.good(Messages.M041, meta_path)
msg.good("Loaded meta.json from file", meta_path)
else:
meta = generate_meta(input_dir, meta, msg)
for key in ("lang", "name", "version"):
if key not in meta or meta[key] == "":
msg.fail(Messages.M048.format(key=key), Messages.M049, exits=1)
msg.fail(
"No '{}' setting found in meta.json".format(key),
"This setting is required to build your package.",
exits=1,
)
model_name = meta["lang"] + "_" + meta["name"]
model_name_v = model_name + "-" + meta["version"]
main_path = output_path / model_name_v
@ -59,8 +62,10 @@ def package(input_dir, output_dir, meta_path=None, create_meta=False, force=Fals
shutil.rmtree(path2str(package_path))
else:
msg.fail(
Messages.M044,
Messages.M045.format(path=path2str(package_path)),
"Package directory already exists",
"Please delete the directory and try again, or use the "
"`--force` flag to overwrite existing "
"directories.".format(path=path2str(package_path)),
exits=1,
)
Path.mkdir(package_path, parents=True)
@ -69,8 +74,8 @@ def package(input_dir, output_dir, meta_path=None, create_meta=False, force=Fals
create_file(main_path / "setup.py", TEMPLATE_SETUP)
create_file(main_path / "MANIFEST.in", TEMPLATE_MANIFEST)
create_file(package_path / "__init__.py", TEMPLATE_INIT)
msg.good(Messages.M042.format(name=model_name_v), main_path)
msg.text(Messages.M043)
msg.good("Successfully created package '{}'".format(model_name_v), main_path)
msg.text("To build the package, run `python setup.py sdist` in this directory.")
def create_file(file_path, contents):
@ -98,8 +103,11 @@ def generate_meta(model_path, existing_meta, msg):
"vectors": len(nlp.vocab.vectors),
"keys": nlp.vocab.vectors.n_keys,
}
msg.divider(Messages.M046)
msg.text(Messages.M047)
msg.divider("Generating meta.json")
msg.text(
"Enter the package settings for your model. The following information "
"will be read from your model data: pipeline, vectors."
)
for setting, desc, default in settings:
response = get_raw_input(desc, default)
meta[setting] = default if response == "" and default else response

View File

@ -11,7 +11,6 @@ import srsly
from wasabi import Printer
from thinc.rates import slanted_triangular
from ._messages import Messages
from .._ml import create_default_optimizer
from ..attrs import PROB, IS_OOV, CLUSTER, LANG
from ..gold import GoldCorpus
@ -19,22 +18,6 @@ from .. import util
from .. import about
# Take dropout and batch size as generators of values -- dropout
# starts high and decays sharply, to force the optimizer to explore.
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
dropout_rates = util.decaying(
util.env_opt("dropout_from", 0.2),
util.env_opt("dropout_to", 0.2),
util.env_opt("dropout_decay", 0.0),
)
batch_sizes = util.compounding(
util.env_opt("batch_from", 100),
util.env_opt("batch_to", 1000),
util.env_opt("batch_compound", 1.001),
)
@plac.annotations(
lang=("Model language", "positional", None, str),
output_path=("Output directory to store model in", "positional", None, Path),
@ -108,36 +91,59 @@ def train(
dev_path = util.ensure_path(dev_path)
meta_path = util.ensure_path(meta_path)
if not train_path or not train_path.exists():
msg.fail(Messages.M050, train_path, exits=1)
msg.fail("Training data not found", train_path, exits=1)
if not dev_path or not dev_path.exists():
msg.fail(Messages.M051, dev_path, exits=1)
msg.fail("Development data not found", dev_path, exits=1)
if meta_path is not None and not meta_path.exists():
msg.fail(Messages.M020, meta_path, exits=1)
msg.fail("Can't find model meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path) if meta_path else {}
if not isinstance(meta, dict):
msg.fail(Messages.M052, Messages.M053.format(meta_type=type(meta)), exits=1)
if output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]:
msg.fail(Messages.M062, Messages.M065)
msg.warn(
"Output directory is not empty",
"This can lead to unintended side effects when saving the model. "
"Please use an empty directory or a different path instead. If "
"the specified output path doesn't exist, the directory will be "
"created for you.",
)
if not output_path.exists():
output_path.mkdir()
# Take dropout and batch size as generators of values -- dropout
# starts high and decays sharply, to force the optimizer to explore.
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
dropout_rates = util.decaying(
util.env_opt("dropout_from", 0.2),
util.env_opt("dropout_to", 0.2),
util.env_opt("dropout_decay", 0.0),
)
batch_sizes = util.compounding(
util.env_opt("batch_from", 100.0),
util.env_opt("batch_to", 2000.0),
util.env_opt("batch_compound", 1.001),
)
# Set up the base model and pipeline. If a base model is specified, load
# the model and make sure the pipeline matches the pipeline setting. If
# training starts from a blank model, intitalize the language class.
pipeline = [p.strip() for p in pipeline.split(",")]
msg.text(Messages.M055.format(pipeline=pipeline))
msg.text("Training pipeline: {}".format(pipeline))
if base_model:
msg.text(Messages.M056.format(model=base_model))
msg.text("Starting with base model '{}'".format(base_model))
nlp = util.load_model(base_model)
if nlp.lang != lang:
msg.fail(Messages.M072.format(model_lang=nlp.lang, lang=lang), exits=1)
msg.fail(
"Model language ('{}') doesn't match language specified as "
"`lang` argument ('{}') ".format(nlp.lang, lang),
exits=1,
)
other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipeline]
nlp.disable_pipes(*other_pipes)
for pipe in pipeline:
if pipe not in nlp.pipe_names:
nlp.add_pipe(nlp.create_pipe(pipe))
else:
msg.text(Messages.M057.format(model=lang))
msg.text("Starting with blank model '{}'".format(lang))
lang_cls = util.get_lang_class(lang)
nlp = lang_cls()
for pipe in pipeline:
@ -147,7 +153,7 @@ def train(
nlp.add_pipe(nlp.create_pipe("merge_subtokens"))
if vectors:
msg.text(Messages.M058.format(model=vectors))
msg.text("Loading vector from model '{}'".format(vectors))
_load_vectors(nlp, vectors)
# Multitask objectives
@ -155,13 +161,16 @@ def train(
for pipe_name, multitasks in multitask_options:
if multitasks:
if pipe_name not in pipeline:
msg.fail(Messages.M059.format(pipe=pipe_name))
msg.fail(
"Can't use multitask objective without '{}' in the "
"pipeline".format(pipe_name)
)
pipe = nlp.get_pipe(pipe_name)
for objective in multitasks.split(","):
pipe.add_multitask_objective(objective)
# Prepare training corpus
msg.text(Messages.M060.format(limit=n_examples))
msg.text("Counting training words (limit={})".format(n_examples))
corpus = GoldCorpus(train_path, dev_path, limit=n_examples)
n_train_words = corpus.count_train()
@ -179,11 +188,19 @@ def train(
# Load in pre-trained weights
if init_tok2vec is not None:
components = _load_pretrained_tok2vec(nlp, init_tok2vec)
msg.text(Messages.M071.format(components=components))
msg.text("Loaded pretrained tok2vec for: {}".format(components))
print(
"\nItn. Dep Loss NER Loss UAS NER P. NER R. NER F. Tag % Token % CPU WPS GPU WPS"
)
# fmt: off
row_head = ("Itn", "Dep Loss", "NER Loss", "UAS", "NER P", "NER R", "NER F", "Tag %", "Token %", "CPU WPS", "GPU WPS")
row_settings = {
"widths": (3, 10, 10, 7, 7, 7, 7, 7, 7, 7, 7),
"aligns": tuple(["r" for i in row_head]),
"spacing": 2
}
# fmt: on
print("")
msg.row(row_head, **row_settings)
msg.row(["-" * width for width in row_settings["widths"]], **row_settings)
try:
for i in range(n_iter):
train_docs = corpus.train_docs(
@ -250,15 +267,18 @@ def train(
util.set_env_log(verbose)
print_progress(i, losses, scorer.scores, cpu_wps=cpu_wps, gpu_wps=gpu_wps)
progress = _get_progress(
i, losses, scorer.scores, cpu_wps=cpu_wps, gpu_wps=gpu_wps
)
msg.row(progress, **row_settings)
finally:
with msg.loading(Messages.M061):
with nlp.use_params(optimizer.averages):
final_model_path = output_path / "model-final"
nlp.to_disk(final_model_path)
msg.good(Messages.M066, util.path2str(final_model_path))
_collate_best_model(meta, output_path, nlp.pipe_names)
msg.good("Saved model to output directory", final_model_path)
with msg.loading("Creating best model..."):
best_model_path = _collate_best_model(meta, output_path, nlp.pipe_names)
msg.good("Created best model", best_model_path)
def _load_vectors(nlp, vectors):
@ -301,6 +321,7 @@ def _collate_best_model(meta, output_path, components):
for metric in _get_metrics(component):
meta["accuracy"][metric] = accs[metric]
srsly.write_json(best_dest / "meta.json", meta)
return best_dest
def _find_best(experiment_dir, component):
@ -326,7 +347,7 @@ def _get_metrics(component):
return ("token_acc",)
def print_progress(itn, losses, dev_scores, cpu_wps=0.0, gpu_wps=0.0):
def _get_progress(itn, losses, dev_scores, cpu_wps=0.0, gpu_wps=0.0):
scores = {}
for col in [
"dep_loss",
@ -347,19 +368,16 @@ def print_progress(itn, losses, dev_scores, cpu_wps=0.0, gpu_wps=0.0):
scores.update(dev_scores)
scores["cpu_wps"] = cpu_wps
scores["gpu_wps"] = gpu_wps or 0.0
tpl = "".join(
(
"{:<6d}",
"{dep_loss:<10.3f}",
"{ner_loss:<10.3f}",
"{uas:<8.3f}",
"{ents_p:<8.3f}",
"{ents_r:<8.3f}",
"{ents_f:<8.3f}",
"{tags_acc:<8.3f}",
"{token_acc:<9.3f}",
"{cpu_wps:<9.1f}",
"{gpu_wps:.1f}",
)
)
print(tpl.format(itn, **scores))
return [
itn,
"{:.3f}".format(scores["dep_loss"]),
"{:.3f}".format(scores["ner_loss"]),
"{:.3f}".format(scores["uas"]),
"{:.3f}".format(scores["ents_p"]),
"{:.3f}".format(scores["ents_r"]),
"{:.3f}".format(scores["ents_f"]),
"{:.3f}".format(scores["tags_acc"]),
"{:.3f}".format(scores["token_acc"]),
"{:.0f}".format(scores["cpu_wps"]),
"{:.0f}".format(scores["gpu_wps"]),
]

View File

@ -8,7 +8,6 @@ import requests
import srsly
from wasabi import Printer
from ._messages import Messages
from ..compat import path2str
from ..util import get_data_path
from .. import about
@ -23,13 +22,17 @@ def validate():
with msg.loading("Loading compatibility table..."):
r = requests.get(about.__compatibility__)
if r.status_code != 200:
msg.fail(Messages.M003.format(code=r.status_code), Messages.M021, exits=1)
msg.fail(
"Server error ({})".format(r.status_code),
"Couldn't fetch compatibility table.",
exits=1,
)
msg.good("Loaded compatibility table")
compat = r.json()["spacy"]
current_compat = compat.get(about.__version__)
if not current_compat:
msg.fail(
Messages.M022.format(version=about.__version__),
"Can't find spaCy v{} in compatibility table".format(about.__version__),
about.__compatibility__,
exits=1,
)
@ -49,7 +52,7 @@ def validate():
update_models = [m for m in incompat_models if m in current_compat]
spacy_dir = Path(__file__).parent.parent
msg.divider(Messages.M023.format(version=about.__version__))
msg.divider("Installed models (spaCy v{})".format(about.__version__))
msg.info("spaCy installation: {}".format(path2str(spacy_dir)))
if model_links or model_pkgs:
@ -61,17 +64,24 @@ def validate():
rows.append(get_model_row(current_compat, name, data, msg, "link"))
msg.table(rows, header=header)
else:
msg.text(Messages.M024, exits=0)
msg.text("No models found in your current environment.", exits=0)
if update_models:
msg.divider("Install updates")
msg.text("Use the following commands to update the model packages:")
cmd = "python -m spacy download {}"
print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n")
if na_models:
msg.text(
Messages.M025.format(version=about.__version__, models=", ".join(na_models))
"The following models are not available for spaCy "
"v{}: {}".format(about.__version__, ", ".join(na_models))
)
if incompat_links:
msg.text(Messages.M027.format(path=path2str(get_data_path())))
msg.text(
"You may also want to overwrite the incompatible links using the "
"`python -m spacy link` command with `--force`, or remove them "
"from the data directory. "
"Data path: {path}".format(path=path2str(get_data_path()))
)
if incompat_models or incompat_links:
sys.exit(1)

View File

@ -346,12 +346,12 @@ def _json_iterate(loc):
cdef char close_curly = ord('}')
for i in range(len(py_raw)):
c = raw[i]
if c == backslash:
escape = True
continue
if escape:
escape = False
continue
if c == backslash:
escape = True
continue
if c == quote:
inside_string = not inside_string
continue

View File

@ -58,7 +58,7 @@ cdef struct TokenC:
attr_t tag
int idx
attr_t lemma
attr_t sense
attr_t norm
int head
attr_t dep

View File

@ -3,7 +3,7 @@ from __future__ import unicode_literals
import pytest
from spacy.attrs import ORTH, LENGTH
from spacy.tokens import Doc
from spacy.tokens import Doc, Span
from spacy.vocab import Vocab
from ..util import get_doc
@ -154,6 +154,17 @@ def test_span_as_doc(doc):
assert span.text == span_doc.text.strip()
def test_span_string_label(doc):
span = Span(doc, 0, 1, label='hello')
assert span.label_ == 'hello'
assert span.label == doc.vocab.strings['hello']
def test_span_string_set_label(doc):
span = Span(doc, 0, 1)
span.label_ = 'hello'
assert span.label_ == 'hello'
assert span.label == doc.vocab.strings['hello']
def test_span_ents_property(doc):
"""Test span.ents for the """
doc.ents = [

View File

@ -0,0 +1,14 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.lang.en import English
def test_issue2754():
"""Test that words like 'a' and 'a.m.' don't get exceptional norm values."""
nlp = English()
a = nlp('a')
assert a[0].norm_ == 'a'
am = nlp('am')
assert am[0].norm_ == 'am'

View File

@ -15,7 +15,7 @@ from ..parts_of_speech cimport univ_pos_t
from ..util import normalize_slice
from ..attrs cimport IS_PUNCT, IS_SPACE
from ..lexeme cimport Lexeme
from ..compat import is_config
from ..compat import is_config, basestring_
from ..errors import Errors, TempErrors, Warnings, user_warning, models_warning
from .underscore import Underscore, get_ext_args
@ -42,7 +42,7 @@ cdef class Span:
raise ValueError(Errors.E046.format(name=name))
return Underscore.span_extensions.pop(name)
def __cinit__(self, Doc doc, int start, int end, attr_t label=0,
def __cinit__(self, Doc doc, int start, int end, label=0,
vector=None, vector_norm=None):
"""Create a `Span` object from the slice `doc[start : end]`.
@ -64,6 +64,8 @@ cdef class Span:
self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1])
else:
self.end_char = 0
if isinstance(label, basestring_):
label = doc.vocab.strings.add(label)
if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label))
self.label = label
@ -601,6 +603,8 @@ cdef class Span:
"""RETURNS (unicode): The span's label."""
def __get__(self):
return self.doc.vocab.strings[self.label]
def __set__(self, unicode label_):
self.label = self.doc.vocab.strings.add(label_)
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:

View File

@ -34,6 +34,11 @@ cdef class Token:
return Lexeme.c_check_flag(token.lex, feat_name)
elif feat_name == LEMMA:
return token.lemma
elif feat_name == NORM:
if token.norm == 0:
return token.lex.norm
else:
return token.norm
elif feat_name == POS:
return token.pos
elif feat_name == TAG:
@ -58,6 +63,8 @@ cdef class Token:
attr_t value) nogil:
if feat_name == LEMMA:
token.lemma = value
elif feat_name == NORM:
token.norm = value
elif feat_name == POS:
token.pos = <univ_pos_t>value
elif feat_name == TAG:

View File

@ -249,7 +249,10 @@ cdef class Token:
or norm exceptions.
"""
def __get__(self):
if self.c.norm == 0:
return self.c.lex.norm
else:
return self.c.norm
property shape:
"""RETURNS (uint64): ID of the token's shape, a transform of the
@ -711,7 +714,10 @@ cdef class Token:
norm exceptions.
"""
def __get__(self):
return self.vocab.strings[self.c.lex.norm]
return self.vocab.strings[self.norm]
def __set__(self, unicode norm_):
self.c.norm = self.vocab.strings.add(norm_)
property shape_:
"""RETURNS (unicode): Transform of the tokens's string, to show

View File

@ -15,6 +15,11 @@ import itertools
import numpy.random
import srsly
try:
import cupy.random
except ImportError:
cupy = None
from .symbols import ORTH
from .compat import cupy, CudaStream, path2str, basestring_, unicode_
from .compat import import_file
@ -598,6 +603,8 @@ def use_gpu(gpu_id):
def fix_random_seed(seed=0):
random.seed(seed)
numpy.random.seed(seed)
if cupy is not None:
cupy.random.seed(seed)
class SimpleFrozenDict(dict):

View File

@ -17,7 +17,7 @@ from .structs cimport SerializedLexemeC
from .compat import copy_reg, basestring_
from .errors import Errors
from .lemmatizer import Lemmatizer
from .attrs import intify_attrs
from .attrs import intify_attrs, NORM
from .vectors import Vectors
from ._ml import link_vectors_to_models
from . import util
@ -234,6 +234,9 @@ cdef class Vocab:
self.morphology.assign_tag(token, props[TAG])
for attr_id, value in props.items():
Token.set_struct_attr(token, attr_id, value)
# NORM is the only one that overlaps between the two
# (which is maybe not great?)
if attr_id != NORM:
Lexeme.set_struct_attr(lex, attr_id, value)
return tokens