mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-06 06:30:35 +03:00
Update Corpus
This commit is contained in:
parent
11fa0658f7
commit
0a8b6631a2
|
@ -1,5 +1,6 @@
|
|||
import srsly
|
||||
from pathlib import Path
|
||||
import random
|
||||
from .. import util
|
||||
from .example import Example
|
||||
from ..tokens import DocBin
|
||||
|
@ -11,14 +12,13 @@ class Corpus:
|
|||
|
||||
DOCS: https://spacy.io/api/goldcorpus
|
||||
"""
|
||||
def __init__(self, vocab, train_loc, dev_loc, limit=0):
|
||||
def __init__(self, train_loc, dev_loc, limit=0):
|
||||
"""Create a GoldCorpus.
|
||||
|
||||
train (str / Path): File or directory of training data.
|
||||
dev (str / Path): File or directory of development data.
|
||||
RETURNS (GoldCorpus): The newly created object.
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.train_loc = train_loc
|
||||
self.dev_loc = dev_loc
|
||||
|
||||
|
@ -42,7 +42,12 @@ class Corpus:
|
|||
locs.append(path)
|
||||
return locs
|
||||
|
||||
def read_docbin(self, locs, limit=0):
|
||||
def make_examples(self, nlp, reference_docs, **kwargs):
|
||||
for reference in reference_docs:
|
||||
predicted = nlp.make_doc(reference.text)
|
||||
yield Example(predicted, reference)
|
||||
|
||||
def read_docbin(self, vocab, locs, limit=0):
|
||||
""" Yield training examples as example dicts """
|
||||
i = 0
|
||||
for loc in locs:
|
||||
|
@ -50,31 +55,26 @@ class Corpus:
|
|||
if loc.parts[-1].endswith(".spacy"):
|
||||
with loc.open("rb") as file_:
|
||||
doc_bin = DocBin().from_bytes(file_.read())
|
||||
docs = list(doc_bin.get_docs(self.vocab))
|
||||
assert len(docs) % 2 == 0
|
||||
# Pair up the docs into the (predicted, reference) pairs.
|
||||
for i in range(0, len(docs), 2):
|
||||
predicted = docs[i]
|
||||
reference = docs[i+1]
|
||||
yield Example(predicted, reference)
|
||||
yield from doc_bin.get_docs(vocab)
|
||||
|
||||
def count_train(self):
|
||||
def count_train(self, nlp):
|
||||
"""Returns count of words in train examples"""
|
||||
n = 0
|
||||
i = 0
|
||||
for example in self.train_dataset():
|
||||
for example in self.train_dataset(nlp):
|
||||
n += len(example.predicted)
|
||||
if self.limit and i >= self.limit:
|
||||
break
|
||||
i += 1
|
||||
return n
|
||||
|
||||
def train_dataset(self):
|
||||
examples = self.read_docbin(self.walk_corpus(self.train_loc))
|
||||
def train_dataset(self, nlp, **kwargs):
|
||||
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
|
||||
examples = list(self.make_examples(nlp, ref_docs, **kwargs))
|
||||
random.shuffle(examples)
|
||||
yield from examples
|
||||
|
||||
def dev_dataset(self):
|
||||
examples = self.read_docbin(self.walk_corpus(self.dev_loc))
|
||||
random.shuffle(examples)
|
||||
def dev_dataset(self, nlp):
|
||||
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
|
||||
examples = self.make_examples(nlp, ref_docs, **kwargs)
|
||||
yield from examples
|
||||
|
|
Loading…
Reference in New Issue
Block a user