mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 20:52:23 +03:00
avoid repetitive entities in the output
This commit is contained in:
parent
0d81bce9cc
commit
0aa1083ce8
|
@ -379,7 +379,7 @@ def ant_scorer_forward(
|
|||
|
||||
scores = pw_prod + pw_sum + mask
|
||||
|
||||
top_scores, top_scores_idx = topk(xp, scores, ant_limit)
|
||||
top_scores, top_scores_idx = topk(xp, scores, min(ant_limit, len(scores)))
|
||||
out.append((top_scores, top_scores_idx))
|
||||
|
||||
# In the full model these scores can be further refined. In the current
|
||||
|
|
|
@ -109,16 +109,15 @@ def get_predicted_clusters(
|
|||
|
||||
def get_sentence_map(doc: Doc):
|
||||
"""For the given span, return a list of sentence indexes."""
|
||||
|
||||
try:
|
||||
if doc.is_sentenced:
|
||||
si = 0
|
||||
out = []
|
||||
for sent in doc.sents:
|
||||
for tok in sent:
|
||||
for _ in sent:
|
||||
out.append(si)
|
||||
si += 1
|
||||
return out
|
||||
except ValueError:
|
||||
else:
|
||||
# If there are no sents then just return dummy values.
|
||||
# Shouldn't happen in general training, but typical in init.
|
||||
return [0] * len(doc)
|
||||
|
@ -198,8 +197,9 @@ def select_non_crossing_spans(
|
|||
|
||||
# sort idxs by order in doc
|
||||
selected = sorted(selected, key=lambda idx: (starts[idx], ends[idx]))
|
||||
while len(selected) < limit:
|
||||
selected.append(selected[0]) # this seems a bit weird?
|
||||
# This was causing many repetitive entities in the output - removed for now
|
||||
# while len(selected) < limit:
|
||||
# selected.append(selected[0]) # this seems a bit weird?
|
||||
return selected
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import pytest
|
||||
import spacy
|
||||
|
||||
from spacy import util
|
||||
from spacy.training import Example
|
||||
from spacy.lang.en import English
|
||||
|
@ -50,8 +52,9 @@ def test_initialized(nlp):
|
|||
assert nlp.pipe_names == ["coref"]
|
||||
text = "She gave me her pen."
|
||||
doc = nlp(text)
|
||||
# TODO: The results of this are weird & non-deterministic
|
||||
print(doc.spans)
|
||||
for k, v in doc.spans.items():
|
||||
# Ensure there are no "She, She, She, She, She, ..." problems
|
||||
assert len(v) <= 15
|
||||
|
||||
|
||||
def test_initialized_short(nlp):
|
||||
|
@ -73,6 +76,28 @@ def test_initialized_2(nlp):
|
|||
print(nlp(text).spans)
|
||||
|
||||
|
||||
def test_coref_serialization(nlp):
|
||||
# Test that the coref component can be serialized
|
||||
nlp.add_pipe("coref", last=True)
|
||||
nlp.initialize()
|
||||
assert nlp.pipe_names == ["coref"]
|
||||
text = "She gave me her pen."
|
||||
doc = nlp(text)
|
||||
spans_result = doc.spans
|
||||
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = spacy.load(tmp_dir)
|
||||
assert nlp2.pipe_names == ["coref"]
|
||||
doc2 = nlp2(text)
|
||||
spans_result2 = doc2.spans
|
||||
print(1, [(k, len(v)) for k, v in spans_result.items()])
|
||||
print(2, [(k, len(v)) for k, v in spans_result2.items()])
|
||||
for k, v in spans_result.items():
|
||||
assert spans_result[k] == spans_result2[k]
|
||||
# assert spans_result == spans_result2
|
||||
|
||||
|
||||
def test_overfitting_IO(nlp):
|
||||
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
|
||||
train_examples = []
|
||||
|
@ -90,7 +115,7 @@ def test_overfitting_IO(nlp):
|
|||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
doc = nlp(test_text)
|
||||
print(i, doc.spans)
|
||||
print(losses["coref"]) # < 0.001
|
||||
print(losses["coref"]) # < 0.001
|
||||
|
||||
# test the trained model
|
||||
doc = nlp(test_text)
|
||||
|
|
Loading…
Reference in New Issue
Block a user