mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Rename entailment example
This commit is contained in:
parent
1b9c6240a7
commit
0b7af54219
|
@ -1,77 +0,0 @@
|
|||
# A Decomposable Attention Model for Natural Language Inference
|
||||
|
||||
This directory contains an implementation of entailment prediction model described
|
||||
by Parikh et al. (2016). The model is notable for its competitive performance
|
||||
with very few parameters.
|
||||
|
||||
https://arxiv.org/pdf/1606.01933.pdf
|
||||
|
||||
The model is implemented using Keras and spaCy. Keras is used to build and
|
||||
train the network, while spaCy is used to load the GloVe vectors, perform the
|
||||
feature extraction, and help you apply the model at run-time. The following
|
||||
demo code shows how the entailment model can be used at runtime, once the hook is
|
||||
installed to customise the `.similarity()` method of spaCy's `Doc` and `Span`
|
||||
objects:
|
||||
|
||||
def demo(model_dir):
|
||||
nlp = spacy.load('en', path=model_dir,
|
||||
create_pipeline=create_similarity_pipeline)
|
||||
doc1 = nlp(u'Worst fries ever! Greasy and horrible...')
|
||||
doc2 = nlp(u'The milkshakes are good. The fries are bad.')
|
||||
print(doc1.similarity(doc2))
|
||||
sent1a, sent1b = doc1.sents
|
||||
print(sent1a.similarity(sent1b))
|
||||
print(sent1a.similarity(doc2))
|
||||
print(sent1b.similarity(doc2))
|
||||
|
||||
I'm working on a blog post to explain Parikh et al.'s model in more detail.
|
||||
I think it is a very interesting example of the attention mechanism, which
|
||||
I didn't understand very well before working through this paper.
|
||||
|
||||
# How to run the example
|
||||
|
||||
1. Install spaCy and its English models (about 1GB of data):
|
||||
|
||||
pip install spacy
|
||||
python -m spacy.en.download
|
||||
|
||||
This will give you the spaCy's tokenization, tagging, NER and parsing models,
|
||||
as well as the GloVe word vectors.
|
||||
|
||||
2. Install Keras
|
||||
|
||||
pip install keras
|
||||
|
||||
3. Get Keras working with your GPU
|
||||
|
||||
You're mostly on your own here. My only advice is, if you're setting up on AWS,
|
||||
try using the AMI published by NVidia. With the image, getting everything set
|
||||
up wasn't *too* painful.
|
||||
|
||||
4. Test the Keras model:
|
||||
|
||||
py.test nli/keras_decomposable_attention.py
|
||||
|
||||
This should tell you that two tests passed.
|
||||
|
||||
5. Download the Stanford Natural Language Inference data
|
||||
|
||||
http://nlp.stanford.edu/projects/snli/
|
||||
|
||||
6. Train the model:
|
||||
|
||||
python nli/ train <your_model_dir> <train_directory> <dev_directory>
|
||||
|
||||
Training takes about 300 epochs for full accuracy, and I haven't rerun the full
|
||||
experiment since refactoring things to publish this example --- please let me
|
||||
know if I've broken something.
|
||||
|
||||
You should get to at least 85% on the development data.
|
||||
|
||||
7. Evaluate the model (optional):
|
||||
|
||||
python nli/ evaluate <your_model_dir> <dev_directory>
|
||||
|
||||
8. Run the demo (optional):
|
||||
|
||||
python nli/ demo <your_model_dir>
|
|
@ -1,105 +0,0 @@
|
|||
from __future__ import division, unicode_literals, print_function
|
||||
import spacy
|
||||
|
||||
import plac
|
||||
from pathlib import Path
|
||||
|
||||
from spacy_hook import get_embeddings, get_word_ids
|
||||
from spacy_hook import create_similarity_pipeline
|
||||
|
||||
|
||||
def train(model_dir, train_loc, dev_loc, shape, settings):
|
||||
print("Loading spaCy")
|
||||
nlp = spacy.load('en', tagger=False, parser=False, entity=False, matcher=False)
|
||||
print("Compiling network")
|
||||
model = build_model(get_embeddings(nlp.vocab), shape, settings)
|
||||
print("Processing texts...")
|
||||
train_X = get_features(list(nlp.pipe(train_texts)))
|
||||
dev_X = get_features(list(nlp.pipe(dev_texts)))
|
||||
|
||||
model.fit(
|
||||
train_X,
|
||||
train_labels,
|
||||
validation_data=(dev_X, dev_labels),
|
||||
nb_epoch=settings['nr_epoch'],
|
||||
batch_size=settings['batch_size'])
|
||||
|
||||
|
||||
def evaluate(model_dir, dev_loc):
|
||||
nlp = spacy.load('en', path=model_dir,
|
||||
tagger=False, parser=False, entity=False, matcher=False,
|
||||
create_pipeline=create_similarity_pipeline)
|
||||
n = 0
|
||||
correct = 0
|
||||
for (text1, text2), label in zip(dev_texts, dev_labels):
|
||||
doc1 = nlp(text1)
|
||||
doc2 = nlp(text2)
|
||||
sim = doc1.similarity(doc2)
|
||||
if bool(sim >= 0.5) == label:
|
||||
correct += 1
|
||||
n += 1
|
||||
return correct, total
|
||||
|
||||
|
||||
def demo(model_dir):
|
||||
nlp = spacy.load('en', path=model_dir,
|
||||
tagger=False, parser=False, entity=False, matcher=False,
|
||||
create_pipeline=create_similarity_pipeline)
|
||||
doc1 = nlp(u'Worst fries ever! Greasy and horrible...')
|
||||
doc2 = nlp(u'The milkshakes are good. The fries are bad.')
|
||||
print('doc1.similarity(doc2)', doc1.similarity(doc2))
|
||||
sent1a, sent1b = doc1.sents
|
||||
print('sent1a.similarity(sent1b)', sent1a.similarity(sent1b))
|
||||
print('sent1a.similarity(doc2)', sent1a.similarity(doc2))
|
||||
print('sent1b.similarity(doc2)', sent1b.similarity(doc2))
|
||||
|
||||
|
||||
LABELS = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
|
||||
def read_snli(loc):
|
||||
with open(loc) as file_:
|
||||
for line in file_:
|
||||
eg = json.loads(line)
|
||||
label = eg['gold_label']
|
||||
if label == '-':
|
||||
continue
|
||||
text1 = eg['sentence1']
|
||||
text2 = eg['sentence2']
|
||||
yield text1, text2, LABELS[label]
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
mode=("Mode to execute", "positional", None, str, ["train", "evaluate", "demo"]),
|
||||
model_dir=("Path to spaCy model directory", "positional", None, Path),
|
||||
train_loc=("Path to training data", "positional", None, Path),
|
||||
dev_loc=("Path to development data", "positional", None, Path),
|
||||
max_length=("Length to truncate sentences", "option", "L", int),
|
||||
nr_hidden=("Number of hidden units", "option", "H", int),
|
||||
dropout=("Dropout level", "option", "d", float),
|
||||
learn_rate=("Learning rate", "option", "e", float),
|
||||
batch_size=("Batch size for neural network training", "option", "b", float),
|
||||
nr_epoch=("Number of training epochs", "option", "i", float)
|
||||
)
|
||||
def main(mode, model_dir, train_loc, dev_loc,
|
||||
max_length=100,
|
||||
nr_hidden=100,
|
||||
dropout=0.2,
|
||||
learn_rate=0.001,
|
||||
batch_size=100,
|
||||
nr_epoch=5):
|
||||
shape = (max_length, nr_hidden, 3)
|
||||
settings = {
|
||||
'lr': learn_rate,
|
||||
'dropout': dropout,
|
||||
'batch_size': batch_size,
|
||||
'nr_epoch': nr_epoch
|
||||
}
|
||||
if mode == 'train':
|
||||
train(model_dir, train_loc, dev_loc, shape, settings)
|
||||
elif mode == 'evaluate':
|
||||
evaluate(model_dir, dev_loc)
|
||||
else:
|
||||
demo(model_dir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
|
@ -1,217 +0,0 @@
|
|||
# Semantic similarity with decomposable attention (using spaCy and Keras)
|
||||
# Practical state-of-the-art text similarity with spaCy and Keras
|
||||
import numpy
|
||||
|
||||
from keras.layers import InputSpec, Layer, Input, Dense, merge
|
||||
from keras.layers import Activation, Dropout, Embedding, TimeDistributed
|
||||
import keras.backend as K
|
||||
import theano.tensor as T
|
||||
from keras.models import Sequential, Model, model_from_json
|
||||
from keras.regularizers import l2
|
||||
from keras.optimizers import Adam
|
||||
from keras.layers.normalization import BatchNormalization
|
||||
|
||||
|
||||
def build_model(vectors, shape, settings):
|
||||
'''Compile the model.'''
|
||||
max_length, nr_hidden, nr_class = shape
|
||||
# Declare inputs.
|
||||
ids1 = Input(shape=(max_length,), dtype='int32', name='words1')
|
||||
ids2 = Input(shape=(max_length,), dtype='int32', name='words2')
|
||||
|
||||
# Construct operations, which we'll chain together.
|
||||
embed = _StaticEmbedding(vectors, max_length, nr_hidden)
|
||||
attend = _Attention(max_length, nr_hidden)
|
||||
align = _SoftAlignment(max_length, nr_hidden)
|
||||
compare = _Comparison(max_length, nr_hidden)
|
||||
entail = _Entailment(nr_hidden, nr_class)
|
||||
|
||||
# Declare the model as a computational graph.
|
||||
sent1 = embed(ids1) # Shape: (i, n)
|
||||
sent2 = embed(ids2) # Shape: (j, n)
|
||||
|
||||
attention = attend(sent1, sent2) # Shape: (i, j)
|
||||
|
||||
align1 = align(sent2, attention)
|
||||
align2 = align(sent1, attention, transpose=True)
|
||||
|
||||
feats1 = compare(sent1, align1)
|
||||
feats2 = compare(sent2, align2)
|
||||
|
||||
scores = entail(feats1, feats2)
|
||||
|
||||
# Now that we have the input/output, we can construct the Model object...
|
||||
model = Model(input=[ids1, ids2], output=[scores])
|
||||
|
||||
# ...Compile it...
|
||||
model.compile(
|
||||
optimizer=Adam(lr=settings['lr']),
|
||||
loss='categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
# ...And return it for training.
|
||||
return model
|
||||
|
||||
|
||||
class _StaticEmbedding(object):
|
||||
def __init__(self, vectors, max_length, nr_out):
|
||||
self.embed = Embedding(
|
||||
vectors.shape[0],
|
||||
vectors.shape[1],
|
||||
input_length=max_length,
|
||||
weights=[vectors],
|
||||
name='embed',
|
||||
trainable=False,
|
||||
dropout=0.0)
|
||||
|
||||
self.project = TimeDistributed(
|
||||
Dense(
|
||||
nr_out,
|
||||
activation=None,
|
||||
bias=False,
|
||||
name='project'))
|
||||
|
||||
def __call__(self, sentence):
|
||||
return self.project(self.embed(sentence))
|
||||
|
||||
|
||||
class _Attention(object):
|
||||
def __init__(self, max_length, nr_hidden, dropout=0.0, L2=1e-4, activation='relu'):
|
||||
self.max_length = max_length
|
||||
self.model = Sequential()
|
||||
self.model.add(
|
||||
Dense(nr_hidden, name='attend1',
|
||||
init='he_normal', W_regularizer=l2(L2),
|
||||
input_shape=(nr_hidden,), activation='relu'))
|
||||
self.model.add(Dropout(dropout))
|
||||
self.model.add(Dense(nr_hidden, name='attend2',
|
||||
init='he_normal', W_regularizer=l2(L2), activation='relu'))
|
||||
self.model = TimeDistributed(self.model)
|
||||
|
||||
def __call__(self, sent1, sent2):
|
||||
def _outer((A, B)):
|
||||
att_ji = T.batched_dot(B, A.dimshuffle((0, 2, 1)))
|
||||
return att_ji.dimshuffle((0, 2, 1))
|
||||
|
||||
return merge(
|
||||
[self.model(sent1), self.model(sent2)],
|
||||
mode=_outer,
|
||||
output_shape=(self.max_length, self.max_length))
|
||||
|
||||
|
||||
class _SoftAlignment(object):
|
||||
def __init__(self, max_length, nr_hidden):
|
||||
self.max_length = max_length
|
||||
self.nr_hidden = nr_hidden
|
||||
|
||||
def __call__(self, sentence, attention, transpose=False):
|
||||
def _normalize_attention((att, mat)):
|
||||
if transpose:
|
||||
att = att.dimshuffle((0, 2, 1))
|
||||
# 3d softmax
|
||||
e = K.exp(att - K.max(att, axis=-1, keepdims=True))
|
||||
s = K.sum(e, axis=-1, keepdims=True)
|
||||
sm_att = e / s
|
||||
return T.batched_dot(sm_att, mat)
|
||||
return merge([attention, sentence], mode=_normalize_attention,
|
||||
output_shape=(self.max_length, self.nr_hidden)) # Shape: (i, n)
|
||||
|
||||
|
||||
class _Comparison(object):
|
||||
def __init__(self, words, nr_hidden, L2=1e-6, dropout=0.2):
|
||||
self.words = words
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(nr_hidden, name='compare1',
|
||||
init='he_normal', W_regularizer=l2(L2),
|
||||
input_shape=(nr_hidden*2,)))
|
||||
self.model.add(Activation('relu'))
|
||||
self.model.add(Dropout(dropout))
|
||||
self.model.add(Dense(nr_hidden, name='compare2',
|
||||
W_regularizer=l2(L2), init='he_normal'))
|
||||
self.model.add(Activation('relu'))
|
||||
self.model.add(Dropout(dropout))
|
||||
self.model = TimeDistributed(self.model)
|
||||
|
||||
def __call__(self, sent, align, **kwargs):
|
||||
result = self.model(merge([sent, align], mode='concat')) # Shape: (i, n)
|
||||
result = _GlobalSumPooling1D()(result, mask=self.words)
|
||||
return result
|
||||
|
||||
|
||||
class _Entailment(object):
|
||||
def __init__(self, nr_hidden, nr_out, dropout=0.2, L2=1e-4):
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(nr_hidden, name='entail1',
|
||||
init='he_normal', W_regularizer=l2(L2),
|
||||
input_shape=(nr_hidden*2,)))
|
||||
self.model.add(Activation('relu'))
|
||||
self.model.add(Dropout(dropout))
|
||||
self.model.add(Dense(nr_out, name='entail_out', activation='softmax',
|
||||
W_regularizer=l2(L2), init='zero'))
|
||||
|
||||
def __call__(self, feats1, feats2):
|
||||
features = merge([feats1, feats2], mode='concat')
|
||||
return self.model(features)
|
||||
|
||||
|
||||
class _GlobalSumPooling1D(Layer):
|
||||
'''Global sum pooling operation for temporal data.
|
||||
|
||||
# Input shape
|
||||
3D tensor with shape: `(samples, steps, features)`.
|
||||
|
||||
# Output shape
|
||||
2D tensor with shape: `(samples, features)`.
|
||||
'''
|
||||
def __init__(self, **kwargs):
|
||||
super(_GlobalSumPooling1D, self).__init__(**kwargs)
|
||||
self.input_spec = [InputSpec(ndim=3)]
|
||||
|
||||
def get_output_shape_for(self, input_shape):
|
||||
return (input_shape[0], input_shape[2])
|
||||
|
||||
def call(self, x, mask=None):
|
||||
if mask is not None:
|
||||
return K.sum(x * T.clip(mask, 0, 1), axis=1)
|
||||
else:
|
||||
return K.sum(x, axis=1)
|
||||
|
||||
|
||||
def test_build_model():
|
||||
vectors = numpy.ndarray((100, 8), dtype='float32')
|
||||
shape = (10, 16, 3)
|
||||
settings = {'lr': 0.001, 'dropout': 0.2}
|
||||
model = build_model(vectors, shape, settings)
|
||||
|
||||
|
||||
def test_fit_model():
|
||||
def _generate_X(nr_example, length, nr_vector):
|
||||
X1 = numpy.ndarray((nr_example, length), dtype='int32')
|
||||
X1 *= X1 < nr_vector
|
||||
X1 *= 0 <= X1
|
||||
X2 = numpy.ndarray((nr_example, length), dtype='int32')
|
||||
X2 *= X2 < nr_vector
|
||||
X2 *= 0 <= X2
|
||||
return [X1, X2]
|
||||
def _generate_Y(nr_example, nr_class):
|
||||
ys = numpy.zeros((nr_example, nr_class), dtype='int32')
|
||||
for i in range(nr_example):
|
||||
ys[i, i % nr_class] = 1
|
||||
return ys
|
||||
|
||||
vectors = numpy.ndarray((100, 8), dtype='float32')
|
||||
shape = (10, 16, 3)
|
||||
settings = {'lr': 0.001, 'dropout': 0.2}
|
||||
model = build_model(vectors, shape, settings)
|
||||
|
||||
train_X = _generate_X(20, shape[0], vectors.shape[1])
|
||||
train_Y = _generate_Y(20, shape[2])
|
||||
dev_X = _generate_X(15, shape[0], vectors.shape[1])
|
||||
dev_Y = _generate_Y(15, shape[2])
|
||||
|
||||
model.fit(train_X, train_Y, validation_data=(dev_X, dev_Y), nb_epoch=5,
|
||||
batch_size=4)
|
||||
|
||||
|
||||
|
||||
|
||||
__all__ = [build_model]
|
|
@ -1,62 +0,0 @@
|
|||
from keras.models import model_from_json
|
||||
|
||||
|
||||
class KerasSimilarityShim(object):
|
||||
@classmethod
|
||||
def load(cls, path, nlp, get_features=None):
|
||||
if get_features is None:
|
||||
get_features = doc2ids
|
||||
with (path / 'config.json').open() as file_:
|
||||
config = json.load(file_)
|
||||
model = model_from_json(config['model'])
|
||||
with (path / 'model').open('rb') as file_:
|
||||
weights = pickle.load(file_)
|
||||
embeddings = get_embeddings(nlp.vocab)
|
||||
model.set_weights([embeddings] + weights)
|
||||
return cls(model, get_features=get_features)
|
||||
|
||||
def __init__(self, model, get_features=None):
|
||||
self.model = model
|
||||
self.get_features = get_features
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.user_hooks['similarity'] = self.predict
|
||||
doc.user_span_hooks['similarity'] = self.predict
|
||||
|
||||
def predict(self, doc1, doc2):
|
||||
x1 = self.get_features(doc1)
|
||||
x2 = self.get_features(doc2)
|
||||
scores = self.model.predict([x1, x2])
|
||||
return scores[0]
|
||||
|
||||
|
||||
def get_embeddings(cls, vocab):
|
||||
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
||||
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
|
||||
for lex in vocab:
|
||||
if lex.has_vector:
|
||||
vectors[lex.rank + 1] = lex.vector
|
||||
return vectors
|
||||
|
||||
|
||||
def get_word_ids(docs, max_length=100):
|
||||
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
|
||||
for i, doc in enumerate(docs):
|
||||
j = 0
|
||||
for token in doc:
|
||||
if token.has_vector and not token.is_punct and not token.is_space:
|
||||
Xs[i, j] = token.rank + 1
|
||||
j += 1
|
||||
if j >= max_length:
|
||||
break
|
||||
return Xs
|
||||
|
||||
|
||||
def create_similarity_pipeline(nlp):
|
||||
return [SimilarityModel.load(
|
||||
nlp.path / 'similarity',
|
||||
nlp,
|
||||
feature_extracter=get_features)]
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user