Merge branch 'master' of https://github.com/explosion/spaCy into readme_update

This commit is contained in:
demfier 2017-10-18 22:33:42 +05:30
commit 0b9e1d3660
84 changed files with 2119 additions and 453 deletions

View File

@ -87,8 +87,8 @@ U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect my
* [ ] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
@ -98,9 +98,9 @@ mark both statements:
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Shuvanon Razik |
| Name | |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 3/12/2017 |
| GitHub username | shuvanon |
| Date | |
| GitHub username | |
| Website (optional) | |

106
.github/contributors/honnibal.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [ ] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [x] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Matthew Honnibal |
| Company name (if applicable) | Explosion AI |
| Title or role (if applicable) | Founder |
| Date | 2017-10-18 |
| GitHub username | honnibal |
| Website (optional) | https://explosion.ai |

106
.github/contributors/ines.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [ ] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [x] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Ines Montani |
| Company name (if applicable) | Explosion AI |
| Title or role (if applicable) | Founder |
| Date | 2017/10/18 |
| GitHub username | ines |
| Website (optional) | https://explosion.ai |

106
.github/contributors/mdcclv.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------------------- |
| Name | Orion Montoya |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 04-10-2017 |
| GitHub username | mdcclv |
| Website (optional) | http://www.mdcclv.com/ |

106
.github/contributors/polm.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Paul McCann |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2017-10-14 |
| GitHub username | polm |
| Website (optional) | http://dampfkraft.com|

108
.github/contributors/shuvanon.md vendored Normal file
View File

@ -0,0 +1,108 @@
<!-- This agreement was mistakenly submitted as an update to the CONTRIBUTOR_AGREEMENT.md template. Commit: 8a2d22222dec5cf910df5a378cbcd9ea2ab53ec4. It was therefore moved over manually. -->
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Shuvanon Razik |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 3/12/2017 |
| GitHub username | shuvanon |
| Website (optional) | |

106
.github/contributors/yuukos.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Alexey Kim |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 13-12-2017 |
| GitHub username | yuukos |
| Website (optional) | |

5
.gitignore vendored
View File

@ -29,6 +29,7 @@ Profile.prof
.python-version
__pycache__/
*.py[cod]
.env*/
.env/
.env2/
.env3/
@ -101,3 +102,7 @@ Desktop.ini
# Other
*.tgz
# JetBrains PyCharm
.idea/

View File

@ -70,7 +70,7 @@ The [spaCy developer resources](https://github.com/explosion/spacy-dev-resources
### Contributor agreement
If you've made a substantial contribution to spaCy, you should fill in the [spaCy contributor agreement](.github/CONTRIBUTOR_AGREEMENT.md) to ensure that your contribution can be used across the project. If you agree to be bound by the terms of the agreement, fill in the [template]((.github/CONTRIBUTOR_AGREEMENT.md)) and include it with your pull request, or sumit it separately to [`.github/contributors/`](/.github/contributors). The name of the file should be your GitHub username, with the extension `.md`. For example, the user
If you've made a substantial contribution to spaCy, you should fill in the [spaCy contributor agreement](.github/CONTRIBUTOR_AGREEMENT.md) to ensure that your contribution can be used across the project. If you agree to be bound by the terms of the agreement, fill in the [template](.github/CONTRIBUTOR_AGREEMENT.md) and include it with your pull request, or sumit it separately to [`.github/contributors/`](/.github/contributors). The name of the file should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.

View File

@ -3,6 +3,8 @@
This is a list of everyone who has made significant contributions to spaCy, in alphabetical order. Thanks a lot for the great work!
* Adam Bittlingmayer, [@bittlingmayer](https://github.com/bittlingmayer)
* Alexey Kim, [@yuukos](https://github.com/yuukos)
* Alexis Eidelman, [@AlexisEidelman](https://github.com/AlexisEidelman)
* Andreas Grivas, [@andreasgrv](https://github.com/andreasgrv)
* Andrew Poliakov, [@pavlin99th](https://github.com/pavlin99th)
* Aniruddha Adhikary [@aniruddha-adhikary](https://github.com/aniruddha-adhikary)
@ -25,6 +27,9 @@ This is a list of everyone who has made significant contributions to spaCy, in a
* Ines Montani, [@ines](https://github.com/ines)
* J Nicolas Schrading, [@NSchrading](https://github.com/NSchrading)
* Janneke van der Zwaan, [@jvdzwaan](https://github.com/jvdzwaan)
* Jim Geovedi, [@geovedi](https://github.com/geovedi)
* Jim Regan, [@jimregan](https://github.com/jimregan)
* Jeffrey Gerard, [@IamJeffG](https://github.com/IamJeffG)
* Jordan Suchow, [@suchow](https://github.com/suchow)
* Josh Reeter, [@jreeter](https://github.com/jreeter)
* Juan Miguel Cejuela, [@juanmirocks](https://github.com/juanmirocks)
@ -39,6 +44,8 @@ This is a list of everyone who has made significant contributions to spaCy, in a
* Michael Wallin, [@wallinm1](https://github.com/wallinm1)
* Miguel Almeida, [@mamoit](https://github.com/mamoit)
* Oleg Zd, [@olegzd](https://github.com/olegzd)
* Orion Montoya, [@mdcclv](https://github.com/mdcclv)
* Paul O'Leary McCann, [@polm](https://github.com/polm)
* Pokey Rule, [@pokey](https://github.com/pokey)
* Raphaël Bournhonesque, [@raphael0202](https://github.com/raphael0202)
* Rob van Nieuwpoort, [@RvanNieuwpoort](https://github.com/RvanNieuwpoort)
@ -46,12 +53,18 @@ This is a list of everyone who has made significant contributions to spaCy, in a
* Sam Bozek, [@sambozek](https://github.com/sambozek)
* Sasho Savkov, [@savkov](https://github.com/savkov)
* Shuvanon Razik, [@shuvanon](https://github.com/shuvanon)
* Swier, [@swierh](https://github.com/swierh)
* Thomas Tanon, [@Tpt](https://github.com/Tpt)
* Tiago Rodrigues, [@TiagoMRodrigues](https://github.com/TiagoMRodrigues)
* Vimos Tan, [@Vimos](https://github.com/Vimos)
* Vsevolod Solovyov, [@vsolovyov](https://github.com/vsolovyov)
* Wah Loon Keng, [@kengz](https://github.com/kengz)
* Wannaphong Phatthiyaphaibun, [@wannaphongcom](https://github.com/wannaphongcom)
* Willem van Hage, [@wrvhage](https://github.com/wrvhage)
* Wolfgang Seeker, [@wbwseeker](https://github.com/wbwseeker)
* Yam, [@hscspring](https://github.com/hscspring)
* Yanhao Yang, [@YanhaoYang](https://github.com/YanhaoYang)
* Yasuaki Uechi, [@uetchy](https://github.com/uetchy)
* Yu-chun Huang, [@galaxyh](https://github.com/galaxyh)
* Yubing Dong, [@tomtung](https://github.com/tomtung)
* Yuval Pinter, [@yuvalpinter](https://github.com/yuvalpinter)

View File

@ -9,9 +9,9 @@ Portuguese, Dutch, Swedish, Finnish, Norwegian, Hungarian, Bengali, Hebrew,
Chinese and Japanese. It's commercial open-source software, released under the
MIT license.
⭐️ **Test spaCy v2.0.0 alpha and the new models!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/tag/v2.0.0-alpha>`_
⭐️ **Test spaCy v2.0.0 alpha and the new models!** `Read the release notes. <https://github.com/explosion/spaCy/releases/tag/v2.0.0-alpha>`_
💫 **Version 1.8 out now!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/>`_
💫 **Version 1.9 out now!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/>`_
.. image:: https://img.shields.io/travis/explosion/spaCy/master.svg?style=flat-square
:target: https://travis-ci.org/explosion/spaCy
@ -63,11 +63,12 @@ MIT license.
💬 Where to ask questions
==========================
Please understand that we won't be able to provide individual support via email. We also believe that help is much more valuable if it's shared publicly, so that more people can benefit from it.
====================== ===
**Bug reports** `GitHub issue tracker`_
**Usage questions** `StackOverflow`_, `Gitter chat`_, `Reddit user group`_
**General discussion** `Gitter chat`_, `Reddit user group`_
**Commercial support** contact@explosion.ai
====================== ===
.. _GitHub issue tracker: https://github.com/explosion/spaCy/issues
@ -325,6 +326,7 @@ and ``--model`` are optional and enable additional tests:
=========== ============== ===========
Version Date Description
=========== ============== ===========
`v1.9.0`_ ``2017-07-22`` Spanish model, alpha support for Norwegian & Japanese, and bug fixes
`v1.8.2`_ ``2017-04-26`` French model and small improvements
`v1.8.1`_ ``2017-04-23`` Saving, loading and training bug fixes
`v1.8.0`_ ``2017-04-16`` Better NER training, saving and loading
@ -358,6 +360,7 @@ Version Date Description
`v0.93`_ ``2015-09-22`` Bug fixes to word vectors
=========== ============== ===========
.. _v1.9.0: https://github.com/explosion/spaCy/releases/tag/v1.9.0
.. _v1.8.2: https://github.com/explosion/spaCy/releases/tag/v1.8.2
.. _v1.8.1: https://github.com/explosion/spaCy/releases/tag/v1.8.1
.. _v1.8.0: https://github.com/explosion/spaCy/releases/tag/v1.8.0

View File

@ -1,322 +0,0 @@
'''WIP --- Doesn't work well yet'''
import plac
import random
import six
import cProfile
import pstats
import pathlib
import cPickle as pickle
from itertools import izip
import spacy
import cytoolz
import cupy as xp
import cupy.cuda
import chainer.cuda
import chainer.links as L
import chainer.functions as F
from chainer import Chain, Variable, report
import chainer.training
import chainer.optimizers
from chainer.training import extensions
from chainer.iterators import SerialIterator
from chainer.datasets import TupleDataset
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp, max_length=100):
raise NotImplementedError
#with (path / 'config.json').open() as file_:
# model = model_from_json(file_.read())
#with (path / 'model').open('rb') as file_:
# lstm_weights = pickle.load(file_)
#embeddings = get_embeddings(nlp.vocab)
#model.set_weights([embeddings] + lstm_weights)
#return cls(model, max_length=max_length)
def __init__(self, model, max_length=100):
self._model = model
self.max_length = max_length
def __call__(self, doc):
X = get_features([doc], self.max_length)
y = self._model.predict(X)
self.set_sentiment(doc, y)
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in cytoolz.partition_all(batch_size, docs):
minibatch = list(minibatch)
sentences = []
for doc in minibatch:
sentences.extend(doc.sents)
Xs = get_features(sentences, self.max_length)
ys = self._model.predict(Xs)
for sent, label in zip(sentences, ys):
sent.doc.sentiment += label - 0.5
for doc in minibatch:
yield doc
def set_sentiment(self, doc, y):
doc.sentiment = float(y[0])
# Sentiment has a native slot for a single float.
# For arbitrary data storage, there's:
# doc.user_data['my_data'] = y
class Classifier(Chain):
def __init__(self, predictor):
super(Classifier, self).__init__(predictor=predictor)
def __call__(self, x, t):
y = self.predictor(x)
loss = F.softmax_cross_entropy(y, t)
accuracy = F.accuracy(y, t)
report({'loss': loss, 'accuracy': accuracy}, self)
return loss
class SentimentModel(Chain):
def __init__(self, nlp, shape, **settings):
Chain.__init__(self,
embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden'],
set_vectors=lambda arr: set_vectors(arr, nlp.vocab)),
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
self.to_gpu(0)
def __call__(self, sentence):
return self.predict(
self.attend(
self.encode(
self.embed(sentence))))
class _Embed(Chain):
def __init__(self, nr_vector, nr_dim, nr_out, set_vectors=None):
Chain.__init__(self,
embed=L.EmbedID(nr_vector, nr_dim, initialW=set_vectors),
project=L.Linear(None, nr_out, nobias=True))
self.embed.W.volatile = False
def __call__(self, sentence):
return [self.project(self.embed(ts)) for ts in F.transpose(sentence)]
class _Encode(Chain):
def __init__(self, nr_in, nr_out):
Chain.__init__(self,
fwd=L.LSTM(nr_in, nr_out),
bwd=L.LSTM(nr_in, nr_out),
mix=L.Bilinear(nr_out, nr_out, nr_out))
def __call__(self, sentence):
self.fwd.reset_state()
fwds = map(self.fwd, sentence)
self.bwd.reset_state()
bwds = reversed(map(self.bwd, reversed(sentence)))
return [F.elu(self.mix(f, b)) for f, b in zip(fwds, bwds)]
class _Attend(Chain):
def __init__(self, nr_in, nr_out):
Chain.__init__(self)
def __call__(self, sentence):
sent = sum(sentence)
return sent
class _Predict(Chain):
def __init__(self, nr_in, nr_out):
Chain.__init__(self,
l1=L.Linear(nr_in, nr_in),
l2=L.Linear(nr_in, nr_out))
def __call__(self, vector):
vector = self.l1(vector)
vector = F.elu(vector)
vector = self.l2(vector)
return vector
class SentenceDataset(TupleDataset):
def __init__(self, nlp, texts, labels, max_length):
self.max_length = max_length
sents, labels = self._get_labelled_sentences(
nlp.pipe(texts, batch_size=5000, n_threads=3),
labels)
TupleDataset.__init__(self,
get_features(sents, max_length),
labels)
def __getitem__(self, index):
batches = [dataset[index] for dataset in self._datasets]
if isinstance(index, slice):
length = len(batches[0])
returns = [tuple([batch[i] for batch in batches])
for i in six.moves.range(length)]
return returns
else:
return tuple(batches)
def _get_labelled_sentences(self, docs, doc_labels):
labels = []
sentences = []
for doc, y in izip(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, xp.asarray(labels, dtype='i')
class DocDataset(TupleDataset):
def __init__(self, nlp, texts, labels):
self.max_length = max_length
DatasetMixin.__init__(self,
get_features(
nlp.pipe(texts, batch_size=5000, n_threads=3), self.max_length),
labels)
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (('pos', 1), ('neg', 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = file_.read()
examples.append((text, label))
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
def get_features(docs, max_length):
docs = list(docs)
Xs = xp.zeros((len(docs), max_length), dtype='i')
for i, doc in enumerate(docs):
j = 0
for token in doc:
if token.has_vector and not token.is_punct and not token.is_space:
Xs[i, j] = token.norm
j += 1
if j >= max_length:
break
return Xs
def set_vectors(vectors, vocab):
for lex in vocab:
if lex.has_vector and (lex.rank+1) < vectors.shape[0]:
lex.norm = lex.rank+1
vectors[lex.rank + 1] = lex.vector
else:
lex.norm = 0
return vectors
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
by_sentence=True):
nlp = spacy.load('en', entity=False)
if 'nr_vector' not in lstm_shape:
lstm_shape['nr_vector'] = max(lex.rank+1 for lex in nlp.vocab if lex.has_vector)
if 'nr_dim' not in lstm_shape:
lstm_shape['nr_dim'] = nlp.vocab.vectors_length
print("Make model")
model = Classifier(SentimentModel(nlp, lstm_shape, **lstm_settings))
print("Parsing texts...")
if by_sentence:
train_data = SentenceDataset(nlp, train_texts, train_labels, lstm_shape['max_length'])
dev_data = SentenceDataset(nlp, dev_texts, dev_labels, lstm_shape['max_length'])
else:
train_data = DocDataset(nlp, train_texts, train_labels)
dev_data = DocDataset(nlp, dev_texts, dev_labels)
train_iter = SerialIterator(train_data, batch_size=batch_size,
shuffle=True, repeat=True)
dev_iter = SerialIterator(dev_data, batch_size=batch_size,
shuffle=False, repeat=False)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
updater = chainer.training.StandardUpdater(train_iter, optimizer, device=0)
trainer = chainer.training.Trainer(updater, (1, 'epoch'), out='result')
trainer.extend(extensions.Evaluator(dev_iter, model, device=0))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport([
'epoch', 'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar())
trainer.run()
def evaluate(model_dir, texts, labels, max_length=100):
def create_pipeline(nlp):
'''
This could be a lambda, but named functions are easier to read in Python.
'''
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
max_length=max_length)]
nlp = spacy.load('en')
nlp.pipeline = create_pipeline(nlp)
correct = 0
i = 0
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
i += 1
return float(correct) / i
@plac.annotations(
train_dir=("Location of training file or directory"),
dev_dir=("Location of development file or directory"),
model_dir=("Location of output model directory",),
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
nr_hidden=("Number of hidden units", "option", "H", int),
max_length=("Maximum sentence length", "option", "L", int),
dropout=("Dropout", "option", "d", float),
learn_rate=("Learn rate", "option", "e", float),
nb_epoch=("Number of training epochs", "option", "i", int),
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int)
)
def main(model_dir, train_dir, dev_dir,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, learn_rate=0.001, # General NN config
nb_epoch=5, batch_size=32, nr_examples=-1): # Training params
model_dir = pathlib.Path(model_dir)
train_dir = pathlib.Path(train_dir)
dev_dir = pathlib.Path(dev_dir)
if is_runtime:
dev_texts, dev_labels = read_data(dev_dir)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
print("Using GPU 0")
#chainer.cuda.get_device(0).use()
train_labels = xp.asarray(train_labels, dtype='i')
dev_labels = xp.asarray(dev_labels, dtype='i')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 2,
'nr_vector': 5000},
{'dropout': 0.5, 'lr': learn_rate},
{},
nb_epoch=nb_epoch, batch_size=batch_size)
if __name__ == '__main__':
#cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
#s = pstats.Stats("Profile.prof")
#s.strip_dirs().sort_stats("time").print_stats()
plac.call(main)

View File

@ -24,8 +24,8 @@ For more details, see the documentation:
* Training the Named Entity Recognizer: https://spacy.io/docs/usage/train-ner
* Saving and loading models: https://spacy.io/docs/usage/saving-loading
Developed for: spaCy 1.7.6
Last tested for: spaCy 1.7.6
Developed for: spaCy 1.9.0
Last tested for: spaCy 1.9.0
"""
from __future__ import unicode_literals, print_function
@ -52,6 +52,7 @@ def train_ner(nlp, train_data, output_dir):
random.shuffle(train_data)
loss = 0.
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
# By default, the GoldParse class assumes that the entities
# described by offset are complete, and all other words should
@ -63,7 +64,6 @@ def train_ner(nlp, train_data, output_dir):
#for i in range(len(gold.ner)):
#if not gold.ner[i].endswith('ANIMAL'):
# gold.ner[i] = '-'
doc = nlp.make_doc(raw_text)
nlp.tagger(doc)
# As of 1.9, spaCy's parser now lets you supply a dropout probability
# This might help the model generalize better from only a few

View File

@ -0,0 +1,164 @@
'''
This example shows training of the POS tagger without the Language class,
showing the APIs of the atomic components.
This example was adapted from the gist here:
https://gist.github.com/kamac/a7bc139f62488839a8118214a4d932f2
Issue discussing the gist:
https://github.com/explosion/spaCy/issues/1179
The example was written for spaCy 1.8.2.
'''
from __future__ import unicode_literals
from __future__ import print_function
import plac
import codecs
import spacy.symbols as symbols
import spacy
from pathlib import Path
from spacy.vocab import Vocab
from spacy.tagger import Tagger
from spacy.tokens import Doc
from spacy.gold import GoldParse
from spacy.language import Language
from spacy import orth
from spacy import attrs
import random
TAG_MAP = {
'ADJ': {symbols.POS: symbols.ADJ},
'ADP': {symbols.POS: symbols.ADP},
'PUNCT': {symbols.POS: symbols.PUNCT},
'ADV': {symbols.POS: symbols.ADV},
'AUX': {symbols.POS: symbols.AUX},
'SYM': {symbols.POS: symbols.SYM},
'INTJ': {symbols.POS: symbols.INTJ},
'CCONJ': {symbols.POS: symbols.CCONJ},
'X': {symbols.POS: symbols.X},
'NOUN': {symbols.POS: symbols.NOUN},
'DET': {symbols.POS: symbols.DET},
'PROPN': {symbols.POS: symbols.PROPN},
'NUM': {symbols.POS: symbols.NUM},
'VERB': {symbols.POS: symbols.VERB},
'PART': {symbols.POS: symbols.PART},
'PRON': {symbols.POS: symbols.PRON},
'SCONJ': {symbols.POS: symbols.SCONJ},
}
LEX_ATTR_GETTERS = {
attrs.LOWER: lambda string: string.lower(),
attrs.NORM: lambda string: string,
attrs.SHAPE: orth.word_shape,
attrs.PREFIX: lambda string: string[0],
attrs.SUFFIX: lambda string: string[-3:],
attrs.CLUSTER: lambda string: 0,
attrs.IS_ALPHA: orth.is_alpha,
attrs.IS_ASCII: orth.is_ascii,
attrs.IS_DIGIT: lambda string: string.isdigit(),
attrs.IS_LOWER: orth.is_lower,
attrs.IS_PUNCT: orth.is_punct,
attrs.IS_SPACE: lambda string: string.isspace(),
attrs.IS_TITLE: orth.is_title,
attrs.IS_UPPER: orth.is_upper,
attrs.IS_BRACKET: orth.is_bracket,
attrs.IS_QUOTE: orth.is_quote,
attrs.IS_LEFT_PUNCT: orth.is_left_punct,
attrs.IS_RIGHT_PUNCT: orth.is_right_punct,
attrs.LIKE_URL: orth.like_url,
attrs.LIKE_NUM: orth.like_number,
attrs.LIKE_EMAIL: orth.like_email,
attrs.IS_STOP: lambda string: False,
attrs.IS_OOV: lambda string: True
}
def read_ud_data(path):
data = []
last_number = -1
sentence_words = []
sentence_tags = []
with codecs.open(path, encoding="utf-8") as f:
while True:
line = f.readline()
if not line:
break
if line[0].isdigit():
d = line.split()
if not "-" in d[0]:
number = int(line[0])
if number < last_number:
data.append((sentence_words, sentence_tags),)
sentence_words = []
sentence_tags = []
sentence_words.append(d[2])
sentence_tags.append(d[3])
last_number = number
if len(sentence_words) > 0:
data.append((sentence_words, sentence_tags,))
return data
def ensure_dir(path):
if not path.exists():
path.mkdir()
def main(train_loc, dev_loc, output_dir=None):
if output_dir is not None:
output_dir = Path(output_dir)
ensure_dir(output_dir)
ensure_dir(output_dir / "pos")
ensure_dir(output_dir / "vocab")
train_data = read_ud_data(train_loc)
vocab = Vocab(tag_map=TAG_MAP, lex_attr_getters=LEX_ATTR_GETTERS)
# Populate vocab
for words, _ in train_data:
for word in words:
_ = vocab[word]
model = spacy.tagger.TaggerModel(spacy.tagger.Tagger.feature_templates)
tagger = Tagger(vocab, model)
print(tagger.tag_names)
for i in range(30):
print("training model (iteration " + str(i) + ")...")
score = 0.
num_samples = 0.
for words, tags in train_data:
doc = Doc(vocab, words=words)
gold = GoldParse(doc, tags=tags)
cost = tagger.update(doc, gold)
for i, word in enumerate(doc):
num_samples += 1
if word.tag_ == tags[i]:
score += 1
print('Train acc', score/num_samples)
random.shuffle(train_data)
tagger.model.end_training()
score = 0.0
test_data = read_ud_data(dev_loc)
num_samples = 0
for words, tags in test_data:
doc = Doc(vocab, words)
tagger(doc)
for i, word in enumerate(doc):
num_samples += 1
if word.tag_ == tags[i]:
score += 1
print("score: " + str(score / num_samples * 100.0))
if output_dir is not None:
tagger.model.dump(str(output_dir / 'pos' / 'model'))
with (output_dir / 'vocab' / 'strings.json').open('w') as file_:
tagger.vocab.strings.dump(file_)
if __name__ == '__main__':
plac.call(main)

View File

@ -7,10 +7,11 @@ thinc>=6.5.0,<6.6.0
murmurhash>=0.26,<0.27
plac<1.0.0,>=0.9.6
six
html5lib==1.0b8
ujson>=1.35
dill>=0.2,<0.3
requests>=2.13.0,<3.0.0
regex==2017.4.5
requests>=2.11.0,<3.0.0
regex>=2017.4.1,<2017.12.1
ftfy>=4.4.2,<5.0.0
pytest>=3.0.6,<4.0.0
pip>=9.0.0,<10.0.0

View File

@ -203,7 +203,7 @@ def setup_package():
'ujson>=1.35',
'dill>=0.2,<0.3',
'requests>=2.13.0,<3.0.0',
'regex==2017.4.5',
'regex>=2017.4.1,<2017.12.1',
'ftfy>=4.4.2,<5.0.0'],
classifiers=[
'Development Status :: 5 - Production/Stable',

View File

@ -5,13 +5,15 @@ from . import util
from .deprecated import resolve_model_name
from .cli.info import info
from .glossary import explain
from .about import __version__
from . import en, de, zh, es, it, hu, fr, pt, nl, sv, fi, bn, he, nb, ja
from . import en, de, zh, es, it, hu, fr, pt, nl, sv, fi, bn, he, nb, ja,th, ru
_languages = (en.English, de.German, es.Spanish, pt.Portuguese, fr.French,
it.Italian, hu.Hungarian, zh.Chinese, nl.Dutch, sv.Swedish,
fi.Finnish, bn.Bengali, he.Hebrew, nb.Norwegian, ja.Japanese)
fi.Finnish, bn.Bengali, he.Hebrew, nb.Norwegian, ja.Japanese,
th.Thai, ru.Russian)
for _lang in _languages:

View File

@ -3,7 +3,7 @@
# https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py
__title__ = 'spacy'
__version__ = '1.8.2'
__version__ = '1.9.0'
__summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython'
__uri__ = 'https://spacy.io'
__author__ = 'Matthew Honnibal'

View File

@ -276,7 +276,10 @@ for verb_data in [
{ORTH: "are", LEMMA: "be", TAG: "VBP", "number": 2},
{ORTH: "is", LEMMA: "be", TAG: "VBZ"},
{ORTH: "was", LEMMA: "be"},
{ORTH: "were", LEMMA: "be"}
{ORTH: "were", LEMMA: "be"},
{ORTH: "have"},
{ORTH: "has", LEMMA: "have"},
{ORTH: "dare"}
]:
verb_data_tc = dict(verb_data)
verb_data_tc[ORTH] = verb_data_tc[ORTH].title()

View File

@ -86,3 +86,28 @@ votre vous vous-mêmes vu vé vôtre vôtres
zut
""".split())
# Number words
NUM_WORDS = set("""
zero un deux trois quatre cinq six sept huit neuf dix
onze douze treize quatorze quinze seize dix-sept dix-huit dix-neuf
vingt trente quanrante cinquante soixante septante quatre-vingt huitante nonante
cent mille mil million milliard billion quadrillion quintillion
sextillion septillion octillion nonillion decillion
""".split())
# Ordinal words
ORDINAL_WORDS = set("""
premier deuxième second troisième quatrième cinquième sixième septième huitième neuvième dixième
onzième douzième treizième quatorzième quinzième seizième dix-septième dix-huitième dix-neufième
vingtième trentième quanrantième cinquantième soixantième septantième quatre-vingtième huitantième nonantième
centième millième millionnième milliardième billionnième quadrillionnième quintillionnième
sextillionnième septillionnième octillionnième nonillionnième decillionnième
""".split())

View File

@ -60,7 +60,7 @@ GLOSSARY = {
'JJR': 'adjective, comparative',
'JJS': 'adjective, superlative',
'LS': 'list item marker',
'MD': 'verb, modal auxillary',
'MD': 'verb, modal auxiliary',
'NIL': 'missing tag',
'NN': 'noun, singular or mass',
'NNP': 'noun, proper singular',
@ -91,7 +91,7 @@ GLOSSARY = {
'NFP': 'superfluous punctuation',
'GW': 'additional word in multi-word expression',
'XX': 'unknown',
'BES': 'auxillary "be"',
'BES': 'auxiliary "be"',
'HVS': 'forms of "have"',

View File

@ -3,21 +3,122 @@ from __future__ import unicode_literals, print_function
from os import path
from ..language import Language
from ..language import Language, BaseDefaults
from ..tokenizer import Tokenizer
from ..tagger import Tagger
from ..attrs import LANG
from ..tokens import Doc
from .language_data import *
import re
from collections import namedtuple
ShortUnitWord = namedtuple('ShortUnitWord', ['surface', 'base_form', 'part_of_speech'])
DETAILS_KEY = 'mecab_details'
def try_mecab_import():
"""Mecab is required for Japanese support, so check for it.
It it's not available blow up and explain how to fix it."""
try:
import MeCab
return MeCab
except ImportError:
raise ImportError("Japanese support requires MeCab: "
"https://github.com/SamuraiT/mecab-python3")
class JapaneseTokenizer(object):
def __init__(self, cls, nlp=None):
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
MeCab = try_mecab_import()
self.tokenizer = MeCab.Tagger()
def __call__(self, text):
dtokens = detailed_tokens(self.tokenizer, text)
words = [x.surface for x in dtokens]
doc = Doc(self.vocab, words=words, spaces=[False]*len(words))
# stash details tokens for tagger to use
doc.user_data[DETAILS_KEY] = dtokens
return doc
def resolve_pos(token):
"""If necessary, add a field to the POS tag for UD mapping.
Under Universal Dependencies, sometimes the same Unidic POS tag can
be mapped differently depending on the literal token or its context
in the sentence. This function adds information to the POS tag to
resolve ambiguous mappings.
"""
# NOTE: This is a first take. The rules here are crude approximations.
# For many of these, full dependencies are needed to properly resolve
# PoS mappings.
if token.part_of_speech == '連体詞,*,*,*':
if re.match('^[こそあど此其彼]の', token.surface):
return token.part_of_speech + ',DET'
if re.match('^[こそあど此其彼]', token.surface):
return token.part_of_speech + ',PRON'
else:
return token.part_of_speech + ',ADJ'
return token.part_of_speech
def detailed_tokens(tokenizer, text):
"""Format Mecab output into a nice data structure, based on Janome."""
node = tokenizer.parseToNode(text)
node = node.next # first node is beginning of sentence and empty, skip it
words = []
while node.posid != 0:
surface = node.surface
base = surface
parts = node.feature.split(',')
pos = ','.join(parts[0:4])
if len(parts) > 6:
# this information is only available for words in the tokenizer dictionary
reading = parts[6]
base = parts[7]
words.append( ShortUnitWord(surface, base, pos) )
node = node.next
return words
class JapaneseTagger(object):
def __init__(self, vocab):
MeCab = try_mecab_import()
self.tagger = Tagger(vocab)
self.tokenizer = MeCab.Tagger()
def __call__(self, tokens):
# two parts to this:
# 1. get raw JP tags
# 2. add features to tags as necessary for UD
dtokens = tokens.user_data[DETAILS_KEY]
rawtags = list(map(resolve_pos, dtokens))
self.tagger.tag_from_strings(tokens, rawtags)
class JapaneseDefaults(BaseDefaults):
tag_map = TAG_MAP
@classmethod
def create_tokenizer(cls, nlp=None):
return JapaneseTokenizer(cls, nlp)
@classmethod
def create_tagger(cls, tokenizer):
return JapaneseTagger(tokenizer.vocab)
class Japanese(Language):
lang = 'ja'
Defaults = JapaneseDefaults
def make_doc(self, text):
try:
from janome.tokenizer import Tokenizer
except ImportError:
raise ImportError("The Japanese tokenizer requires the Janome library: "
"https://github.com/mocobeta/janome")
words = [x.surface for x in Tokenizer().tokenize(text)]
return Doc(self.vocab, words=words, spaces=[False]*len(words))
jdoc = self.tokenizer(text)
tagger = JapaneseDefaults.create_tagger(self.tokenizer)
tagger(jdoc)
return jdoc

View File

@ -3,22 +3,86 @@ from __future__ import unicode_literals
from ..symbols import *
TAG_MAP = {
"ADV": {POS: ADV},
"NOUN": {POS: NOUN},
"ADP": {POS: ADP},
"PRON": {POS: PRON},
"SCONJ": {POS: SCONJ},
"PROPN": {POS: PROPN},
"DET": {POS: DET},
"SYM": {POS: SYM},
"INTJ": {POS: INTJ},
"PUNCT": {POS: PUNCT},
"NUM": {POS: NUM},
"AUX": {POS: AUX},
"X": {POS: X},
"CONJ": {POS: CONJ},
"ADJ": {POS: ADJ},
"VERB": {POS: VERB}
# Explanation of Unidic tags:
# https://www.gavo.t.u-tokyo.ac.jp/~mine/japanese/nlp+slp/UNIDIC_manual.pdf
# Universal Dependencies Mapping:
# http://universaldependencies.org/ja/overview/morphology.html
# http://universaldependencies.org/ja/pos/all.html
"記号,一般,*,*":{POS: PUNCT}, # this includes characters used to represent sounds like ドレミ
"記号,文字,*,*":{POS: PUNCT}, # this is for Greek and Latin characters used as sumbols, as in math
"感動詞,フィラー,*,*": {POS: INTJ},
"感動詞,一般,*,*": {POS: INTJ},
# this is specifically for unicode full-width space
"空白,*,*,*": {POS: X},
"形状詞,一般,*,*":{POS: ADJ},
"形状詞,タリ,*,*":{POS: ADJ},
"形状詞,助動詞語幹,*,*":{POS: ADJ},
"形容詞,一般,*,*":{POS: ADJ},
"形容詞,非自立可能,*,*":{POS: AUX}, # XXX ADJ if alone, AUX otherwise
"助詞,格助詞,*,*":{POS: ADP},
"助詞,係助詞,*,*":{POS: ADP},
"助詞,終助詞,*,*":{POS: PART},
"助詞,準体助詞,*,*":{POS: SCONJ}, # の as in 走るのが速い
"助詞,接続助詞,*,*":{POS: SCONJ}, # verb ending て
"助詞,副助詞,*,*":{POS: PART}, # ばかり, つつ after a verb
"助動詞,*,*,*":{POS: AUX},
"接続詞,*,*,*":{POS: SCONJ}, # XXX: might need refinement
"接頭辞,*,*,*":{POS: NOUN},
"接尾辞,形状詞的,*,*":{POS: ADJ}, # がち, チック
"接尾辞,形容詞的,*,*":{POS: ADJ}, # -らしい
"接尾辞,動詞的,*,*":{POS: NOUN}, # -じみ
"接尾辞,名詞的,サ変可能,*":{POS: NOUN}, # XXX see 名詞,普通名詞,サ変可能,*
"接尾辞,名詞的,一般,*":{POS: NOUN},
"接尾辞,名詞的,助数詞,*":{POS: NOUN},
"接尾辞,名詞的,副詞可能,*":{POS: NOUN}, # -後, -過ぎ
"代名詞,*,*,*":{POS: PRON},
"動詞,一般,*,*":{POS: VERB},
"動詞,非自立可能,*,*":{POS: VERB}, # XXX VERB if alone, AUX otherwise
"動詞,非自立可能,*,*,AUX":{POS: AUX},
"動詞,非自立可能,*,*,VERB":{POS: VERB},
"副詞,*,*,*":{POS: ADV},
"補助記号,,一般,*":{POS: SYM}, # text art
"補助記号,,顔文字,*":{POS: SYM}, # kaomoji
"補助記号,一般,*,*":{POS: SYM},
"補助記号,括弧開,*,*":{POS: PUNCT}, # open bracket
"補助記号,括弧閉,*,*":{POS: PUNCT}, # close bracket
"補助記号,句点,*,*":{POS: PUNCT}, # period or other EOS marker
"補助記号,読点,*,*":{POS: PUNCT}, # comma
"名詞,固有名詞,一般,*":{POS: PROPN}, # general proper noun
"名詞,固有名詞,人名,一般":{POS: PROPN}, # person's name
"名詞,固有名詞,人名,姓":{POS: PROPN}, # surname
"名詞,固有名詞,人名,名":{POS: PROPN}, # first name
"名詞,固有名詞,地名,一般":{POS: PROPN}, # place name
"名詞,固有名詞,地名,国":{POS: PROPN}, # country name
"名詞,助動詞語幹,*,*":{POS: AUX},
"名詞,数詞,*,*":{POS: NUM}, # includes Chinese numerals
"名詞,普通名詞,サ変可能,*":{POS: NOUN}, # XXX: sometimes VERB in UDv2; suru-verb noun
"名詞,普通名詞,サ変可能,*,NOUN":{POS: NOUN},
"名詞,普通名詞,サ変可能,*,VERB":{POS: VERB},
"名詞,普通名詞,サ変形状詞可能,*":{POS: NOUN}, # ex: 下手
"名詞,普通名詞,一般,*":{POS: NOUN},
"名詞,普通名詞,形状詞可能,*":{POS: NOUN}, # XXX: sometimes ADJ in UDv2
"名詞,普通名詞,形状詞可能,*,NOUN":{POS: NOUN},
"名詞,普通名詞,形状詞可能,*,ADJ":{POS: ADJ},
"名詞,普通名詞,助数詞可能,*":{POS: NOUN}, # counter / unit
"名詞,普通名詞,副詞可能,*":{POS: NOUN},
"連体詞,*,*,*":{POS: ADJ}, # XXX this has exceptions based on literal token
"連体詞,*,*,*,ADJ":{POS: ADJ},
"連体詞,*,*,*,PRON":{POS: PRON},
"連体詞,*,*,*,DET":{POS: DET},
}

View File

@ -19,22 +19,24 @@ _CURRENCY = r"""
_QUOTES = r"""
' '' " ” “ `` ` ´ , „ » «
"""
_PUNCT = r"""
, : ; \! \? ¿ ¡ \( \) \[ \] \{ \} < > _ # \* &
·
"""
_HYPHENS = r"""
- -- ---
- -- --- ~
"""
LIST_ELLIPSES = [
r'\.\.+',
""
" ……"
]

View File

@ -22,5 +22,6 @@ TAG_MAP = {
"CCONJ": {POS: CCONJ}, # U20
"ADJ": {POS: ADJ},
"VERB": {POS: VERB},
"PART": {POS: PART}
"PART": {POS: PART},
'SP': {POS: SPACE}
}

View File

@ -32,11 +32,11 @@ _URL_PATTERN = (
r"(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))"
r"|"
# host name
r"(?:(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)"
r"(?:(?:[a-z0-9\-]*)?[a-z0-9]+)"
# domain name
r"(?:\.(?:[a-z\u00a1-\uffff0-9]-*)*[a-z\u00a1-\uffff0-9]+)*"
r"(?:\.(?:[a-z0-9\-])*[a-z0-9]+)*"
# TLD identifier
r"(?:\.(?:[a-z\u00a1-\uffff]{2,}))"
r"(?:\.(?:[a-z]{2,}))"
r")"
# port number
r"(?::\d{2,5})?"

View File

@ -78,15 +78,16 @@ def lemmatize(string, index, exceptions, rules):
# forms.append(string)
forms.extend(exceptions.get(string, []))
oov_forms = []
for old, new in rules:
if string.endswith(old):
form = string[:len(string) - len(old)] + new
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
else:
oov_forms.append(form)
if not forms:
for old, new in rules:
if string.endswith(old):
form = string[:len(string) - len(old)] + new
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
else:
oov_forms.append(form)
if not forms:
forms.extend(oov_forms)
if not forms:

View File

@ -159,6 +159,10 @@ cdef class Lexeme:
def __get__(self):
return self.c.id
property lex_id:
def __get__(self):
return self.c.id
property repvec:
def __get__(self):
raise AttributeError("lex.repvec has been renamed to lex.vector")
@ -173,6 +177,11 @@ cdef class Lexeme:
def __get__(self):
return self.vocab.strings[self.c.orth]
property text:
def __get__(self):
return self.vocab.strings[self.c.orth]
property lower:
def __get__(self): return self.c.lower
def __set__(self, int x): self.c.lower = x

View File

@ -4,7 +4,7 @@ from __future__ import unicode_literals
from .. import language_data as base
from ..language_data import update_exc, strings_to_exc
from .stop_words import STOP_WORDS
from .word_sets import STOP_WORDS, NUM_WORDS
STOP_WORDS = set(STOP_WORDS)

View File

@ -41,3 +41,22 @@ want waren was wat we wel werd wezen wie wij wil worden
zal ze zei zelf zich zij zijn zo zonder zou
""".split())
# Number words
NUM_WORDS = set("""
nul een één twee drie vier vijf zes zeven acht negen tien elf twaalf dertien
veertien twintig dertig veertig vijftig zestig zeventig tachtig negentig honderd
duizend miljoen miljard biljoen biljard triljoen triljard
""".split())
# Ordinal words
ORDINAL_WORDS = set("""
eerste tweede derde vierde vijfde zesde zevende achtste negende tiende elfde
twaalfde dertiende veertiende twintigste dertigste veertigste vijftigste
zestigste zeventigste tachtigste negentigste honderdste duizendste miljoenste
miljardste biljoenste biljardste triljoenste triljardste
""".split())

78
spacy/ru/__init__.py Normal file
View File

@ -0,0 +1,78 @@
# encoding: utf8
from __future__ import unicode_literals, print_function
from ..language import Language
from ..attrs import LANG
from ..tokens import Doc
from .language_data import *
class RussianTokenizer(object):
_morph = None
def __init__(self, spacy_tokenizer, cls, nlp=None):
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
raise ImportError(
"The Russian tokenizer requires the pymorphy2 library: "
"try to fix it with "
"pip install pymorphy2==0.8")
RussianTokenizer._morph = RussianTokenizer._create_morph(MorphAnalyzer)
self.vocab = nlp.vocab if nlp else cls.create_vocab(nlp)
self._spacy_tokenizer = spacy_tokenizer
def __call__(self, text):
get_norm = RussianTokenizer._get_norm
has_space = RussianTokenizer._has_space
words_with_space_flags = [(get_norm(token), has_space(token, text))
for token in self._spacy_tokenizer(text)]
words, spaces = map(lambda s: list(s), zip(*words_with_space_flags))
return Doc(self.vocab, words, spaces)
@staticmethod
def _get_word(token):
return token.lemma_ if len(token.lemma_) > 0 else token.text
@staticmethod
def _has_space(token, text):
pos_after_token = token.idx + len(token.text)
return pos_after_token < len(text) and text[pos_after_token] == ' '
@classmethod
def _get_norm(cls, token):
return cls._normalize(cls._get_word(token))
@classmethod
def _normalize(cls, word):
return cls._morph.parse(word)[0].normal_form
@classmethod
def _create_morph(cls, morph_analyzer_class):
if not cls._morph:
cls._morph = morph_analyzer_class()
return cls._morph
class RussianDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'ru'
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
@classmethod
def create_tokenizer(cls, nlp=None):
tokenizer = super(RussianDefaults, cls).create_tokenizer(nlp)
return RussianTokenizer(tokenizer, cls, nlp)
class Russian(Language):
lang = 'ru'
Defaults = RussianDefaults

18
spacy/ru/language_data.py Normal file
View File

@ -0,0 +1,18 @@
# encoding: utf8
from __future__ import unicode_literals
from .. import language_data as base
from ..language_data import update_exc, strings_to_exc
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
STOP_WORDS = set(STOP_WORDS)
TOKENIZER_EXCEPTIONS = dict(TOKENIZER_EXCEPTIONS)
update_exc(TOKENIZER_EXCEPTIONS, strings_to_exc(base.EMOTICONS))
__all__ = ["STOP_WORDS", "TOKENIZER_EXCEPTIONS"]

54
spacy/ru/stop_words.py Normal file
View File

@ -0,0 +1,54 @@
# encoding: utf8
from __future__ import unicode_literals
STOP_WORDS = set("""
а
будем будет будете будешь буду будут будучи будь будьте бы был была были было
быть
в вам вами вас весь во вот все всё всего всей всем всём всеми всему всех всею
всея всю вся вы
да для до
его едим едят ее её ей ел ела ем ему емъ если ест есть ешь еще ещё ею
же
за
и из или им ими имъ их
к как кем ко когда кого ком кому комья которая которого которое которой котором
которому которою которую которые который которым которыми которых кто
меня мне мной мною мог моги могите могла могли могло могу могут мое моё моего
моей моем моём моему моею можем может можете можешь мои мой моим моими моих
мочь мою моя мы
на нам нами нас наса наш наша наше нашего нашей нашем нашему нашею наши нашим
нашими наших нашу не него нее неё ней нем нём нему нет нею ним ними них но
о об один одна одни одним одними одних одно одного одной одном одному одною
одну он она оне они оно от
по при
с сам сама сами самим самими самих само самого самом самому саму свое своё
своего своей своем своём своему своею свои свой своим своими своих свою своя
себе себя собой собою
та так такая такие таким такими таких такого такое такой таком такому такою
такую те тебе тебя тем теми тех то тобой тобою того той только том томах тому
тот тою ту ты
у уже
чего чем чём чему что чтобы
эта эти этим этими этих это этого этой этом этому этот этою эту
я
""".split())

View File

@ -0,0 +1,30 @@
# encoding: utf8
from __future__ import unicode_literals
from ..symbols import *
TOKENIZER_EXCEPTIONS = {
"Пн.": [
{ORTH: "Пн.", LEMMA: "Понедельник"}
],
"Вт.": [
{ORTH: "Вт.", LEMMA: "Вторник"}
],
"Ср.": [
{ORTH: "Ср.", LEMMA: "Среда"}
],
"Чт.": [
{ORTH: "Чт.", LEMMA: "Четверг"}
],
"Пт.": [
{ORTH: "Пт.", LEMMA: "Пятница"}
],
"Сб.": [
{ORTH: "Сб.", LEMMA: "Суббота"}
],
"Вс.": [
{ORTH: "Вс.", LEMMA: "Воскресенье"}
],
}

View File

@ -9,7 +9,7 @@ def english_noun_chunks(obj):
Detect base noun phrases from a dependency parse.
Works on both Doc and Span.
"""
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', 'dative', 'appos',
'attr', 'ROOT']
doc = obj.doc # Ensure works on both Doc and Span.
np_deps = [doc.vocab.strings[label] for label in labels]
@ -117,4 +117,5 @@ def es_noun_chunks(obj):
token = next_token(token)
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks}
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks,
None: english_noun_chunks, '': english_noun_chunks}

View File

@ -147,6 +147,9 @@ cdef class Parser:
# TODO: remove this shim when we don't have to support older data
if 'labels' in cfg and 'actions' not in cfg:
cfg['actions'] = cfg.pop('labels')
# Convert string keys to int
if cfg.get('actions'):
cfg['actions'] = {int(action_name): labels for action_name, labels in cfg['actions'].items()}
# TODO: remove this shim when we don't have to support older data
for action_name, labels in dict(cfg.get('actions', {})).items():
# We need this to be sorted

View File

@ -5,6 +5,7 @@ from ..en import English
from ..de import German
from ..es import Spanish
from ..it import Italian
from ..ja import Japanese
from ..fr import French
from ..pt import Portuguese
from ..nl import Dutch
@ -14,7 +15,8 @@ from ..fi import Finnish
from ..bn import Bengali
from ..he import Hebrew
from ..nb import Norwegian
from ..th import Thai
from ..ru import Russian
from ..tokens import Doc
from ..strings import StringStore
@ -26,7 +28,7 @@ from pathlib import Path
import os
import pytest
# These languages get run through generic tokenizer tests
LANGUAGES = [English, German, Spanish, Italian, French, Portuguese, Dutch,
Swedish, Hungarian, Finnish, Bengali, Norwegian]
@ -51,6 +53,7 @@ def en_vocab():
def en_parser():
return English.Defaults.create_parser()
@pytest.fixture
def es_tokenizer():
return Spanish.Defaults.create_tokenizer()
@ -76,6 +79,18 @@ def fi_tokenizer():
return Finnish.Defaults.create_tokenizer()
@pytest.fixture
def ja_tokenizer():
pytest.importorskip("MeCab")
return Japanese.Defaults.create_tokenizer()
@pytest.fixture
def japanese():
pytest.importorskip("MeCab")
return Japanese()
@pytest.fixture
def sv_tokenizer():
return Swedish.Defaults.create_tokenizer()
@ -90,10 +105,30 @@ def bn_tokenizer():
def he_tokenizer():
return Hebrew.Defaults.create_tokenizer()
@pytest.fixture
def nb_tokenizer():
return Norwegian.Defaults.create_tokenizer()
@pytest.fixture
def th_tokenizer():
pythainlp = pytest.importorskip("pythainlp")
return Thai.Defaults.create_tokenizer()
@pytest.fixture
def ru_tokenizer():
pytest.importorskip("pymorphy2")
return Russian.Defaults.create_tokenizer()
@pytest.fixture
def russian():
pytest.importorskip("pymorphy2")
return Russian()
@pytest.fixture
def stringstore():
return StringStore()
@ -101,7 +136,7 @@ def stringstore():
@pytest.fixture
def en_entityrecognizer():
return English.Defaults.create_entity()
return English.Defaults.create_entity()
@pytest.fixture
@ -113,6 +148,7 @@ def lemmatizer():
def text_file():
return StringIO()
@pytest.fixture
def text_file_b():
return BytesIO()
@ -132,11 +168,11 @@ def DE():
def pytest_addoption(parser):
parser.addoption("--models", action="store_true",
help="include tests that require full models")
help="include tests that require full models")
parser.addoption("--vectors", action="store_true",
help="include word vectors tests")
help="include word vectors tests")
parser.addoption("--slow", action="store_true",
help="include slow tests")
help="include slow tests")
def pytest_runtest_setup(item):

View File

@ -216,6 +216,13 @@ def test_doc_api_has_vector(en_tokenizer, text_file, text, vectors):
doc = en_tokenizer(text)
assert doc.has_vector
def test_lowest_common_ancestor(en_tokenizer):
tokens = en_tokenizer('the lazy dog slept')
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
lca = doc.get_lca_matrix()
assert(lca[1, 1] == 1)
assert(lca[0, 1] == 2)
assert(lca[1, 2] == 2)
def test_parse_tree(en_tokenizer):
"""Tests doc.print_tree() method."""

View File

View File

@ -0,0 +1,38 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
TAGGER_TESTS = [
('あれならそこにあるよ',
(('代名詞,*,*,*', 'PRON'),
('助動詞,*,*,*', 'AUX'),
('代名詞,*,*,*', 'PRON'),
('助詞,格助詞,*,*', 'ADP'),
('動詞,非自立可能,*,*', 'VERB'),
('助詞,終助詞,*,*', 'PART'))),
('このファイルには小さなテストが入っているよ',
(('連体詞,*,*,*,DET', 'DET'),
('名詞,普通名詞,サ変可能,*', 'NOUN'),
('助詞,格助詞,*,*', 'ADP'),
('助詞,係助詞,*,*', 'ADP'),
('連体詞,*,*,*,ADJ', 'ADJ'),
('名詞,普通名詞,サ変可能,*', 'NOUN'),
('助詞,格助詞,*,*', 'ADP'),
('動詞,一般,*,*', 'VERB'),
('助詞,接続助詞,*,*', 'SCONJ'),
('動詞,非自立可能,*,*', 'VERB'),
('助詞,終助詞,*,*', 'PART'))),
('プププランドに行きたい',
(('名詞,普通名詞,一般,*', 'NOUN'),
('助詞,格助詞,*,*', 'ADP'),
('動詞,非自立可能,*,*', 'VERB'),
('助動詞,*,*,*', 'AUX')))
]
@pytest.mark.parametrize('text,expected_tags', TAGGER_TESTS)
def test_japanese_tagger(japanese, text, expected_tags):
tokens = japanese.make_doc(text)
assert len(tokens) == len(expected_tags)
for token, res in zip(tokens, expected_tags):
assert token.tag_ == res[0] and token.pos_ == res[1]

View File

@ -0,0 +1,17 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
TOKENIZER_TESTS = [
("日本語だよ", ['日本', '', '', '']),
("東京タワーの近くに住んでいます。", ['東京', 'タワー', '', '近く', '', '住ん', '', '', 'ます', '']),
("吾輩は猫である。", ['吾輩', '', '', '', 'ある', '']),
("月に代わって、お仕置きよ!", ['', '', '代わっ', '', '', '', '仕置き', '', '!']),
("すもももももももものうち", ['すもも', '', 'もも', '', 'もも', '', 'うち'])
]
@pytest.mark.parametrize('text,expected_tokens', TOKENIZER_TESTS)
def test_japanese_tokenizer(ja_tokenizer, text, expected_tokens):
tokens = [token.text for token in ja_tokenizer(text)]
assert tokens == expected_tokens

View File

@ -47,6 +47,36 @@ def test_parser_noun_chunks_pp_chunks(en_tokenizer):
assert chunks[1].text_with_ws == "another phrase "
def test_parser_noun_chunks_appositional_modifiers(en_tokenizer):
text = "Sam, my brother, arrived to the house."
heads = [5, -1, 1, -3, -4, 0, -1, 1, -2, -4]
tags = ['NNP', ',', 'PRP$', 'NN', ',', 'VBD', 'IN', 'DT', 'NN', '.']
deps = ['nsubj', 'punct', 'poss', 'appos', 'punct', 'ROOT', 'prep', 'det', 'pobj', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "Sam "
assert chunks[1].text_with_ws == "my brother "
assert chunks[2].text_with_ws == "the house "
def test_parser_noun_chunks_dative(en_tokenizer):
text = "She gave Bob a raise."
heads = [1, 0, -1, 1, -3, -4]
tags = ['PRP', 'VBD', 'NNP', 'DT', 'NN', '.']
deps = ['nsubj', 'ROOT', 'dative', 'det', 'dobj', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], tags=tags, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "She "
assert chunks[1].text_with_ws == "Bob "
assert chunks[2].text_with_ws == "a raise "
def test_parser_noun_chunks_standard_de(de_tokenizer):
text = "Eine Tasse steht auf dem Tisch."
heads = [1, 1, 0, -1, 1, -2, -4]

View File

@ -0,0 +1,13 @@
from ...vocab import Vocab
def test_lexeme_text():
vocab = Vocab()
lex = vocab[u'the']
assert lex.text == u'the'
def test_lexeme_lex_id():
vocab = Vocab()
lex1 = vocab[u'the']
lex2 = vocab[u'be']
assert lex1.lex_id != lex2.lex_id

View File

@ -0,0 +1,27 @@
from __future__ import unicode_literals
from ...symbols import ORTH
from ...vocab import Vocab
from ...en import English
def test_issue1061():
'''Test special-case works after tokenizing. Was caching problem.'''
text = 'I like _MATH_ even _MATH_ when _MATH_, except when _MATH_ is _MATH_! but not _MATH_.'
tokenizer = English.Defaults.create_tokenizer()
doc = tokenizer(text)
assert 'MATH' in [w.text for w in doc]
assert '_MATH_' not in [w.text for w in doc]
tokenizer.add_special_case('_MATH_', [{ORTH: '_MATH_'}])
doc = tokenizer(text)
assert '_MATH_' in [w.text for w in doc]
assert 'MATH' not in [w.text for w in doc]
# For sanity, check it works when pipeline is clean.
tokenizer = English.Defaults.create_tokenizer()
tokenizer.add_special_case('_MATH_', [{ORTH: '_MATH_'}])
doc = tokenizer(text)
assert '_MATH_' in [w.text for w in doc]
assert 'MATH' not in [w.text for w in doc]

View File

@ -0,0 +1,25 @@
from __future__ import unicode_literals
from ..util import get_doc
from ...vocab import Vocab
from ...en import English
def test_span_noun_chunks():
vocab = Vocab(lang='en', tag_map=English.Defaults.tag_map)
words = "Employees are recruiting talented staffers from overseas .".split()
heads = [1, 1, 0, 1, -2, -1, -5]
deps = ['nsubj', 'aux', 'ROOT', 'nmod', 'dobj', 'adv', 'pobj']
tags = ['NNS', 'VBP', 'VBG', 'JJ', 'NNS', 'IN', 'NN', '.']
doc = get_doc(vocab, words=words, heads=heads, deps=deps, tags=tags)
doc.is_parsed = True
noun_chunks = [np.text for np in doc.noun_chunks]
assert noun_chunks == ['Employees', 'talented staffers', 'overseas']
span = doc[0:4]
noun_chunks = [np.text for np in span.noun_chunks]
assert noun_chunks == ['Employees']
for sent in doc.sents:
noun_chunks = [np.text for np in sent.noun_chunks]
assert noun_chunks == ['Employees', 'talented staffers', 'overseas']

View File

@ -0,0 +1,13 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
@pytest.mark.parametrize('text', [
"She hasn't done the housework.",
"I haven't done it before.",
"you daren't do that"])
def test_issue1281(en_tokenizer, text):
tokens = en_tokenizer(text)
assert tokens[2].text == "n't"

View File

@ -0,0 +1,22 @@
# coding: utf-8
from __future__ import unicode_literals
from ...symbols import POS, VERB, VerbForm_part
from ...vocab import Vocab
from ...lemmatizer import Lemmatizer
from ..util import get_doc
import pytest
def test_issue1387():
tag_map = {'VBG': {POS: VERB, VerbForm_part: True}}
index = {"verb": ("cope","cop")}
exc = {"verb": {"coping": ("cope",)}}
rules = {"verb": [["ing", ""]]}
lemmatizer = Lemmatizer(index, exc, rules)
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
doc = get_doc(vocab, ["coping"])
doc[0].tag_ = 'VBG'
assert doc[0].text == "coping"
assert doc[0].lemma_ == "cope"

View File

@ -14,7 +14,5 @@ def test_issue693(EN):
doc2 = EN(text2)
chunks1 = [chunk for chunk in doc1.noun_chunks]
chunks2 = [chunk for chunk in doc2.noun_chunks]
for word in doc1:
print(word.text, word.dep_, word.head.text)
assert len(chunks1) == 2
assert len(chunks2) == 2

View File

@ -15,7 +15,6 @@ def test_issue955(doc):
'''Test that we don't have any nested noun chunks'''
seen_tokens = set()
for np in doc.noun_chunks:
print(np.text, np.root.text, np.root.dep_, np.root.tag_)
for word in np:
key = (word.i, word.text)
assert key not in seen_tokens

View File

@ -54,6 +54,17 @@ def test_spans_span_sent(doc):
assert doc[6:7].sent.root.left_edge.text == 'This'
def test_spans_lca_matrix(en_tokenizer):
"""Test span's lca matrix generation"""
tokens = en_tokenizer('the lazy dog slept')
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
lca = doc[:2].get_lca_matrix()
assert(lca[0, 0] == 0)
assert(lca[0, 1] == -1)
assert(lca[1, 0] == -1)
assert(lca[1, 1] == 1)
def test_spans_default_sentiment(en_tokenizer):
"""Test span.sentiment property's default averaging behaviour"""
text = "good stuff bad stuff"

View File

@ -47,3 +47,20 @@ def test_tagger_lemmatizer_lemma_assignment(EN):
assert all(t.lemma_ == '' for t in doc)
EN.tagger(doc)
assert all(t.lemma_ != '' for t in doc)
from ...symbols import POS, VERB, VerbForm_part
from ...vocab import Vocab
from ...lemmatizer import Lemmatizer
from ..util import get_doc
def test_tagger_lemmatizer_exceptions():
index = {"verb": ("cope","cop")}
exc = {"verb": {"coping": ("cope",)}}
rules = {"verb": [["ing", ""]]}
tag_map = {'VBG': {POS: VERB, VerbForm_part: True}}
lemmatizer = Lemmatizer(index, exc, rules)
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
doc = get_doc(vocab, ["coping"])
doc[0].tag_ = 'VBG'
assert doc[0].text == "coping"
assert doc[0].lemma_ == "cope"

View File

@ -0,0 +1,13 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
TOKENIZER_TESTS = [
("คุณรักผมไหม", ['คุณ', 'รัก', 'ผม', 'ไหม'])
]
@pytest.mark.parametrize('text,expected_tokens', TOKENIZER_TESTS)
def test_thai_tokenizer(th_tokenizer, text, expected_tokens):
tokens = [token.text for token in th_tokenizer(text)]
assert tokens == expected_tokens

View File

@ -0,0 +1,40 @@
# coding: utf-8
from __future__ import unicode_literals
from ...en import English
from ...tokenizer import Tokenizer
from ... import util
import pytest
@pytest.fixture
def tokenizer(en_vocab):
prefix_re = util.compile_prefix_regex(English.Defaults.prefixes)
suffix_re = util.compile_suffix_regex(English.Defaults.suffixes)
custom_infixes = ['\.\.\.+',
'(?<=[0-9])-(?=[0-9])',
# '(?<=[0-9]+),(?=[0-9]+)',
'[0-9]+(,[0-9]+)+',
u'[\[\]!&:,()\*—–\/-]']
infix_re = util.compile_infix_regex(custom_infixes)
return Tokenizer(en_vocab,
English.Defaults.tokenizer_exceptions,
prefix_re.search,
suffix_re.search,
infix_re.finditer,
token_match=None)
def test_customized_tokenizer_handles_infixes(tokenizer):
sentence = "The 8 and 10-county definitions are not used for the greater Southern California Megaregion."
context = [word.text for word in tokenizer(sentence)]
assert context == [u'The', u'8', u'and', u'10', u'-', u'county', u'definitions', u'are', u'not', u'used',
u'for',
u'the', u'greater', u'Southern', u'California', u'Megaregion', u'.']
# the trailing '-' may cause Assertion Error
sentence = "The 8- and 10-county definitions are not used for the greater Southern California Megaregion."
context = [word.text for word in tokenizer(sentence)]
assert context == [u'The', u'8', u'-', u'and', u'10', u'-', u'county', u'definitions', u'are', u'not', u'used',
u'for',
u'the', u'greater', u'Southern', u'California', u'Megaregion', u'.']

View File

@ -33,13 +33,10 @@ URLS_SHOULD_MATCH = [
"http://userid:password@example.com/",
"http://142.42.1.1/",
"http://142.42.1.1:8080/",
"http://⌘.ws",
"http://⌘.ws/",
"http://foo.com/blah_(wikipedia)#cite-1",
"http://foo.com/blah_(wikipedia)_blah#cite-1",
"http://foo.com/unicode_(✪)_in_parens",
"http://foo.com/(something)?after=parens",
"http://☺.damowmow.com/",
"http://code.google.com/events/#&product=browser",
"http://j.mp",
"ftp://foo.bar/baz",
@ -49,14 +46,17 @@ URLS_SHOULD_MATCH = [
"http://a.b-c.de",
"http://223.255.255.254",
"http://a.b--c.de/", # this is a legit domain name see: https://gist.github.com/dperini/729294 comment on 9/9/2014
"http://✪df.ws/123",
"http://➡.ws/䨹",
"http://مثال.إختبار",
"http://例子.测试",
"http://उदाहरण.परीक्षा",
pytest.mark.xfail("http://foo.com/blah_blah_(wikipedia)"),
pytest.mark.xfail("http://foo.com/blah_blah_(wikipedia)_(again)"),
pytest.mark.xfail("http://⌘.ws"),
pytest.mark.xfail("http://⌘.ws/"),
pytest.mark.xfail("http://☺.damowmow.com/"),
pytest.mark.xfail("http://✪df.ws/123"),
pytest.mark.xfail("http://➡.ws/䨹"),
pytest.mark.xfail("http://مثال.إختبار"),
pytest.mark.xfail("http://例子.测试"),
pytest.mark.xfail("http://उदाहरण.परीक्षा"),
]
URLS_SHOULD_NOT_MATCH = [
@ -83,7 +83,6 @@ URLS_SHOULD_NOT_MATCH = [
"http://foo.bar/foo(bar)baz quux",
"ftps://foo.bar/",
"http://-error-.invalid/",
"http://-a.b.co",
"http://a.b-.co",
"http://0.0.0.0",
"http://10.1.1.0",
@ -99,6 +98,7 @@ URLS_SHOULD_NOT_MATCH = [
pytest.mark.xfail("foo.com"),
pytest.mark.xfail("http://1.1.1.1.1"),
pytest.mark.xfail("http://www.foo.bar./"),
pytest.mark.xfail("http://-a.b.co"),
]

28
spacy/th/__init__.py Normal file
View File

@ -0,0 +1,28 @@
# coding: utf8
from __future__ import unicode_literals
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .language_data import *
from ..language import Language, BaseDefaults
from ..attrs import LANG
from ..tokenizer import Tokenizer
from ..tokens import Doc
class ThaiDefaults(BaseDefaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'th'
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
tag_map = TAG_MAP
stop_words = set(STOP_WORDS)
class Thai(Language):
lang = 'th'
Defaults = ThaiDefaults
def make_doc(self, text):
try:
from pythainlp.tokenize import word_tokenize
except ImportError:
raise ImportError("The Thai tokenizer requires the PyThaiNLP library: "
"https://github.com/wannaphongcom/pythainlp/")
words = [x for x in list(word_tokenize(text,"newmm"))]
return Doc(self.vocab, words=words, spaces=[False]*len(words))

25
spacy/th/language_data.py Normal file
View File

@ -0,0 +1,25 @@
# encoding: utf8
from __future__ import unicode_literals
# import base language data
from .. import language_data as base
# import util functions
from ..language_data import update_exc, strings_to_exc
# import language-specific data from files
#from .tag_map import TAG_MAP
from .tag_map import TAG_MAP
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
TAG_MAP = dict(TAG_MAP)
STOP_WORDS = set(STOP_WORDS)
TOKENIZER_EXCEPTIONS = dict(TOKENIZER_EXCEPTIONS)
# export __all__ = ["TAG_MAP", "STOP_WORDS"]
__all__ = ["TAG_MAP", "STOP_WORDS","TOKENIZER_EXCEPTIONS"]

62
spacy/th/stop_words.py Normal file
View File

@ -0,0 +1,62 @@
# encoding: utf8
from __future__ import unicode_literals
# data from https://github.com/wannaphongcom/pythainlp/blob/dev/pythainlp/corpus/stopwords-th.txt
# stop words as whitespace-separated list
STOP_WORDS = set("""
นอกจาก าให ทาง งน วง จาก จะ ความ คร คง ของ
ขอ ระหวาง รวม มาก มา พรอม พบ าน ผล บาง เปดเผย เป เนองจาก เดยวก เดยว เช เฉพาะ เข
อง างๆ าง ตาม งแต าน วย อาจ ออก อยาง อะไร อย อยาก หาก หลาย หลงจาก แต เอง เห
เลย เร เรา เม เพ เพราะ เปนการ เป หล หร หน วน าหร ลง วม ราย ขณะ อน การ
กว กลาว ไว ไป ได ให ใน โดย แห แล และ แรก แบบ เขา เคย ไม อยาก เก เกนๆ เกยวก เกยวก
เกยวของ เกยวเนอง เกยวๆ เกอบ เกอบจะ เกอบๆ แก แก แกไข ใกล ใกล ไกล ไกลๆ ขณะเดยวก ขณะใด ขณะใดๆ ขณะท ขณะน ขณะน ขณะหน ขวาง
ขวางๆ ใคร ใคร ใครจะ ใครๆ าย ายๆ ไง จง จด จน จนกระท จนกว จนขณะน จนตลอด จนถ จนท จนบดน จนเม จนแม จนแม
จรด จรดก จร จรงจ จรงๆ จรงๆจงๆ จวน จวนจะ จวนเจยน จวบ งก งก งก งกนและก งไดแก งๆ วย วยก วยเชนก วยท วยประการฉะน
วยเพราะ วยว วยเหต วยเหต วยเหต วยเหตเพราะ วยเหต วยเหมอนก งกลาว งก งก งกบว งกบว งเก
งเก งเคย ใดๆ ได ไดแก ไดแต ได ไดมา ได ตน ตนเอง ตนฯ ตรง ตรงๆ ตลอด ตลอดกาล ตลอดกาลนาน ตลอดจน ตลอดถ ตลอดท
ตลอดท ตลอดทวถ ตลอดทวท ตลอดป ตลอดไป ตลอดมา ตลอดระยะเวลา ตลอดว ตลอดเวลา ตลอดศก อก งแก งจะ งบดน งบดน
งเม งเมอใด งเมอไร งแม งแมจะ งแม งอยางไร อว กตอง กๆ เถอะ เถ ทรง ทว งคน งต งท งท งน งนนดวย งนนเพราะ
นอก นอกจากท นอกจากน นอกจากน นอกจากว นอกน นอกเหน นอกเหนอจาก อย อยกว อยๆ นะ กๆ นไง นเป นแหละ
นเอง นๆ บจากน บจากน บตงแต บแต บแต บแต เปนต เปนตนไป เปนตนมา เปนแต เปนแตเพยง เปนท เปนท เปนท เปนเพราะ
เปนเพราะว เปนเพยง เปนเพยงว เปนเพ เปนอ เปนอนมาก เปนอนว เปนอนๆ เปนอาท เปนๆ เปลยน เปลยนแปลง เป เปดเผย ไป าน านๆ
ดๆ เพยงเพ เพยงไร เพยงไหน เพอท เพอทจะ เพอว เพอให ภาค ภาคฯ ภาย ภายใต ภายนอก ภายใน ภายภาค ภายภาคหน ภายหน ภายหล
มอง มองว กจะ นๆ ยนะ ยน ยเน ยล นนาน นยง นย นยาว เยอะ เยอะแยะ เยอะๆ แยะ แยะๆ รวด รวดเร วม รวมก วมก
รวมดวย วมดวย รวมถ รวมท วมม รวมๆ ระยะ ระยะๆ ระหวาง บรอง อว นกาลนาน บเนอง ดๆ งกว งส งส งๆ เสมอนก
เสมอนว เสร เสรจก เสรจแล เสรจสมบรณ เสรจส เส เสยกอน เสยจน เสยจนกระท เสยจนถ เสยดวย เสยน เสยนนเอง เสยน เสยนกระไร เสยย
เสยยงน เสยแล ใหญ ให ใหแด ใหไป ใหม ใหมา ใหม ไหน ไหนๆ อด อน อยาง อยางเช อยางด อยางเดยว อยางใด อยางท อยางนอย อยางน
อยางน อยางโน แค จะ ได อเม ตาม ตามแต ตามท แลวแต กระท กระทำ กระน กระผม กล กลาวค กล กลมกอน
กลมๆ กวาง กวางขวาง กวางๆ อนหน อนหนาน อนๆ นดกว นดไหม นเถอะ นนะ นและก นไหม นเอง กำล กำลงจะ กำหนด เก
เก เกยวของ แก แกไข ใกล ใกล าง างเคยง างต างบน างลาง างๆ ขาด าพเจ าฯ เขาใจ เขยน คงจะ คงอย ครบ ครบคร ครบถวน
ครงกระน ครงกอน ครงครา ครงคราว ครงใด ครงท ครงน ครงน ครงละ ครงหน ครงหล ครงหลงส ครงไหน ครงๆ คร คร ครา คราใด คราท คราน คราน คราหน
คราไหน คราว คราวกอน คราวใด คราวท คราวน คราวน คราวโน คราวละ คราวหน คราวหน คราวหล คราวไหน คราวๆ คลาย คลายก คลายกนก
คลายก คลายกบว คลายว ควร อน อนขาง อนขางจะ อยไปทาง อนมาทาง อย อยๆ คะ คำ ดว ณๆ
เคยๆ แค แคจะ แค แค แคเพยง แค แคไหน ใคร ใครจะ าย ายๆ จนกว จนแม จนแม งๆ จวบก จวบจน จะได ดการ ดงาน ดแจง
ดต ดทำ ดหา ดให จากน จากน จากนไป จำ จำเป จำพวก งจะ งเป ฉะน ฉะน เฉกเช เฉย เฉยๆ ไฉน วงกอน
วงตอไป วงถดไป วงทาย วงท วงน วงน วงระหวาง วงแรก วงหน วงหล วงๆ วย านาน ชาว าๆ เชนกอน เชนก เชนเคย
เชนด เชนดงกอน เชนดงเก เชนดงท เชนดงว เชนเดยวก เชนเดยวก เชนใด เชนท เชนทเคย เชนท เชนน เชนนนเอง เชนน เชนเม เชนไร เช
เชอถ เชอม เชอว ใช ใชไหม ใช ซะ ซะกอน ซะจน ซะจนกระท ซะจนถ งไดแก วยก วยเชนก วยท วยเพราะ วยว วยเหต วยเหต
วยเหต วยเหตเพราะ วยเหต วยเหมอนก งกลาว งกบว งกบว งเก งเก งเคย างก างหาก ตามดวย ตามแต ตามท
ตามๆ เตมไปดวย เตมไปหมด เตมๆ แต แตอน แตจะ แตเด แตอง แต แตทว แต แต แตเพยง แตเม แตไร แตละ แต แตไหน แตอยางใด โต
โตๆ ใต าจะ าหาก งแก งแม งแมจะ งแม งอยางไร อว กตอง ทว งนนดวย งปวง งเป งมวล งส งหมด งหลาย งๆ
นใดน นท นทนใด ทำไม ทำไร ทำให ทำๆ จร เดยว ใด ใด ได เถอะ แท แทจร ไร ละ ละ
แล แหงน ไหน กคน กคร กครา กคราว กช กต กทาง กท กท กเม กว กวนน กส กหน กแห กอยาง
กอ กๆ เท เทาก เทาก เทาใด เทาท เทาน เทาน เทาไร เทาไหร แท แทจร เธอ นอกจากว อย อยกว อยๆ นไว บแต นาง
นางสาว าจะ นาน นานๆ นาย นำ นำพา นำมา ดหนอย ดๆ ไง นา แน แหละ แหล เอง เอง เน เน
เนยเอง ในชวง ในท ในเม ในระหวาง บน บอก บอกแล บอกว อย อยกว อยคร อยๆ ดดล ดเดยวน ดน ดน าง บางกว
บางขณะ บางคร บางครา บางคราว บางท บางท บางแห บางๆ ปฏ ประกอบ ประการ ประการฉะน ประการใด ประการหน ประมาณ ประสบ ปร
ปรากฏ ปรากฏว จจ เปนดวย เปนด เปนต เปนแต เปนเพ เปนอ เปนอนมาก เปนอาท านๆ ใด เผ เผอจะ เผอท เผอว าย
ายใด พบว พยายาม พรอมก พรอมก พรอมดวย พรอมท พรอมท พรอมเพยง พวก พวกก พวกก พวกแก พวกเขา พวกค พวกฉ พวกทาน
พวกท พวกเธอ พวกน พวกน พวกน พวกโน พวกม พวกม พอ พอก พอควร พอจะ พอด พอต พอท พอท พอเพยง พอแล พอสม พอสมควร
พอเหมาะ พอๆ พา นๆ เพราะฉะน เพราะว เพ เพงจะ เพ เพมเต เพยง เพยงแค เพยงใด เพยงแต เพยงพอ เพยงเพราะ
เพอว เพอให ภายใต มองว มากกว มากมาย ฉะน ใช ได แต งเน งหมาย เมอกอน เมอคร เมอครงกอน
เมอคราวกอน เมอคราวท เมอคราว เมอค เมอเช เมอใด เมอน เมอน เมอเย เมอไร เมอวนวาน เมอวาน เมอไหร แม แมกระท แมแต แมนว แม
ไมอย ไมอยจะ ไมอยเป ไมใช ไมเปนไร ไม ยก ยกให ยอม ยอมร อม อย งคง งง งง งโง งไง งจะ งแต ยาก
ยาว ยาวนาน งกว งข งขนไป งจน งจะ งน งเม งแล งใหญ วมก รวมดวย วมดวย อว เร เรวๆ เราๆ เรยก เรยบ เรอย
เรอยๆ ไร วน วนจน วนแต ละ าส เล เลกนอย เลกๆ เลาว แลวก แลวแต แลวเสร นใด นน นน นไหน สบาย สม สมยกอน
สมยน สมยน สมยโน วนเก วนดอย วนด วนใด วนท วนนอย วนน วนมาก วนใหญ นๆ สามารถ สำค
งใด งน งน งไหน เสรจแล เสยดวย เสยแล แสดง แสดงว หน หนอ หนอย หนอย หมด หมดก หมดส หรอไง หรอเปล หรอไม หรอย
หรอไร หากแม หากแม หากแมนว หากว หาความ หาใช หาร เหต เหตผล เหต เหต เหตไร เหนแก เหนควร เหนจะ เหนว เหล เหลอเก เหล
เหลาน เหลาน แหงใด แหงน แหงน แหงโน แหงไหน แหละ ใหแก ใหญ ใหญโต อยางเช อยางด อยางเดยว อยางใด อยางท อยางนอย อยางน อยางน
อยางโน อยางมาก อยางย อยางไร อยางไรก อยางไรกได อยางไรเส อยางละ อยางหน อยางไหน อยางๆ นจะ นใด นไดแก นท
นทจร นทจะ นเนองมาจาก นละ นไหน นๆ อาจจะ อาจเป อาจเปนดวย นๆ เอ เอา ฯล ฯลฯ
""".split())

81
spacy/th/tag_map.py Normal file
View File

@ -0,0 +1,81 @@
# encoding: utf8
# data from Korakot Chaovavanich (https://www.facebook.com/photo.php?fbid=390564854695031&set=p.390564854695031&type=3&permPage=1&ifg=1)
from __future__ import unicode_literals
from ..symbols import *
TAG_MAP = {
#NOUN
"NOUN": {POS: NOUN},
"NCMN": {POS: NOUN},
"NTTL": {POS: NOUN},
"CNIT": {POS: NOUN},
"CLTV": {POS: NOUN},
"CMTR": {POS: NOUN},
"CFQC": {POS: NOUN},
"CVBL": {POS: NOUN},
#PRON
"PRON": {POS: PRON},
"NPRP": {POS: PRON},
# ADJ
"ADJ": {POS: ADJ},
"NONM": {POS: ADJ},
"VATT": {POS: ADJ},
"DONM": {POS: ADJ},
# ADV
"ADV": {POS: ADV},
"ADVN": {POS: ADV},
"ADVI": {POS: ADV},
"ADVP": {POS: ADV},
"ADVS": {POS: ADV},
# INT
"INT": {POS: INTJ},
# PRON
"PROPN": {POS: PROPN},
"PPRS": {POS: PROPN},
"PDMN": {POS: PROPN},
"PNTR": {POS: PROPN},
# DET
"DET": {POS: DET},
"DDAN": {POS: DET},
"DDAC": {POS: DET},
"DDBQ": {POS: DET},
"DDAQ": {POS: DET},
"DIAC": {POS: DET},
"DIBQ": {POS: DET},
"DIAQ": {POS: DET},
"DCNM": {POS: DET},
# NUM
"NUM": {POS: NUM},
"NCNM": {POS: NUM},
"NLBL": {POS: NUM},
"DCNM": {POS: NUM},
# AUX
"AUX": {POS: AUX},
"XVBM": {POS: AUX},
"XVAM": {POS: AUX},
"XVMM": {POS: AUX},
"XVBB": {POS: AUX},
"XVAE": {POS: AUX},
# ADP
"ADP": {POS: ADP},
"RPRE": {POS: ADP},
# CCONJ
"CCONJ": {POS: CCONJ},
"JCRG": {POS: CCONJ},
# SCONJ
"SCONJ": {POS: SCONJ},
"PREL": {POS: SCONJ},
"JSBR": {POS: SCONJ},
"JCMP": {POS: SCONJ},
# PART
"PART": {POS: PART},
"FIXN": {POS: PART},
"FIXV": {POS: PART},
"EAFF": {POS: PART},
"AITT": {POS: PART},
"NEG": {POS: PART},
# PUNCT
"PUNCT": {POS: PUNCT},
"PUNC": {POS: PUNCT}
}

View File

@ -0,0 +1,45 @@
# encoding: utf8
from __future__ import unicode_literals
from ..symbols import *
from ..language_data import PRON_LEMMA
TOKENIZER_EXCEPTIONS = {
"ม.ค.": [
{ORTH: "ม.ค.", LEMMA: "มกราคม"}
],
"ก.พ.": [
{ORTH: "ก.พ.", LEMMA: "กุมภาพันธ์"}
],
"มี.ค.": [
{ORTH: "มี.ค.", LEMMA: "มีนาคม"}
],
"เม.ย.": [
{ORTH: "เม.ย.", LEMMA: "เมษายน"}
],
"พ.ค.": [
{ORTH: "พ.ค.", LEMMA: "พฤษภาคม"}
],
"มิ.ย.": [
{ORTH: "มิ.ย.", LEMMA: "มิถุนายน"}
],
"ก.ค.": [
{ORTH: "ก.ค.", LEMMA: "กรกฎาคม"}
],
"ส.ค.": [
{ORTH: "ส.ค.", LEMMA: "สิงหาคม"}
],
"ก.ย.": [
{ORTH: "ก.ย.", LEMMA: "กันยายน"}
],
"ต.ค.": [
{ORTH: "ต.ค.", LEMMA: "ตุลาคม"}
],
"พ.ย.": [
{ORTH: "พ.ย.", LEMMA: "พฤศจิกายน"}
],
"ธ.ค.": [
{ORTH: "ธ.ค.", LEMMA: "ธันวาคม"}
]
}

View File

@ -186,7 +186,13 @@ cdef class Tokenizer:
cdef int _try_cache(self, hash_t key, Doc tokens) except -1:
cached = <_Cached*>self._cache.get(key)
if cached == NULL:
return False
# See 'flush_cache' below for hand-wringing about
# how to handle this.
cached = <_Cached*>self._specials.get(key)
if cached == NULL:
return False
else:
self._cache.set(key, cached)
cdef int i
if cached.is_lex:
for i in range(cached.length):
@ -201,9 +207,15 @@ cdef class Tokenizer:
cdef vector[LexemeC*] suffixes
cdef int orig_size
orig_size = tokens.length
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes)
self._attach_tokens(tokens, span, &prefixes, &suffixes)
self._save_cached(&tokens.c[orig_size], orig_key, tokens.length - orig_size)
special_case = <const _Cached*>self._specials.get(orig_key)
if special_case is not NULL:
for i in range(special_case.length):
tokens.push_back(&special_case.data.tokens[i], False)
self._cache.set(orig_key, <void*>special_case)
else:
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes)
self._attach_tokens(tokens, span, &prefixes, &suffixes)
self._save_cached(&tokens.c[orig_size], orig_key, tokens.length - orig_size)
cdef unicode _split_affixes(self, Pool mem, unicode string,
vector[const LexemeC*] *prefixes,
@ -300,7 +312,8 @@ cdef class Tokenizer:
start = infix_end
span = string[start:]
tokens.push_back(self.vocab.get(tokens.mem, span), False)
if span:
tokens.push_back(self.vocab.get(tokens.mem, span), False)
cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
while it != suffixes.rend():
lexeme = deref(it)
@ -389,5 +402,29 @@ cdef class Tokenizer:
cached.data.tokens = self.vocab.make_fused_token(substrings)
key = hash_string(string)
self._specials.set(key, cached)
self._cache.set(key, cached)
self._rules[string] = substrings
# After changing the tokenization rules, the previous tokenization
# may be stale.
self.flush_cache()
def flush_cache(self):
'''Flush the tokenizer's cache. May not free memory immediately.
This is called automatically after `add_special_case`, but if you
write to the prefix or suffix functions, you'll have to call this
yourself. You may also need to flush the tokenizer cache after
changing the lex_attr_getter functions.
'''
cdef hash_t key
for key in self._cache.keys():
special_case = self._specials.get(key)
# Don't free data shared with special-case rules
if special_case is not NULL:
continue
cached = <_Cached*>self._cache.get(key)
if cached is not NULL:
self.mem.free(cached)
self._cache = PreshMap(1000)
# We could here readd the data from specials --- but if we loop over
# a bunch of special-cases, we'll get a quadratic behaviour. The extra
# lookup isn't so bad? Tough to tell.

View File

@ -614,6 +614,56 @@ cdef class Doc:
self.is_tagged = bool(TAG in attrs or POS in attrs)
return self
def get_lca_matrix(self):
'''
Calculates the lowest common ancestor matrix
for a given Spacy doc.
Returns LCA matrix containing the integer index
of the ancestor, or -1 if no common ancestor is
found (ex if span excludes a necessary ancestor).
Apologies about the recursion, but the
impact on performance is negligible given
the natural limitations on the depth of a typical human sentence.
'''
# Efficiency notes:
#
# We can easily improve the performance here by iterating in Cython.
# To loop over the tokens in Cython, the easiest way is:
# for token in doc.c[:doc.c.length]:
# head = token + token.head
# Both token and head will be TokenC* here. The token.head attribute
# is an integer offset.
def __pairwise_lca(token_j, token_k, lca_matrix):
if lca_matrix[token_j.i][token_k.i] != -2:
return lca_matrix[token_j.i][token_k.i]
elif token_j == token_k:
lca_index = token_j.i
elif token_k.head == token_j:
lca_index = token_j.i
elif token_j.head == token_k:
lca_index = token_k.i
elif (token_j.head == token_j) and (token_k.head == token_k):
lca_index = -1
else:
lca_index = __pairwise_lca(token_j.head, token_k.head, lca_matrix)
lca_matrix[token_j.i][token_k.i] = lca_index
lca_matrix[token_k.i][token_j.i] = lca_index
return lca_index
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
lca_matrix.fill(-2)
for j in range(len(self)):
token_j = self[j]
for k in range(j, len(self)):
token_k = self[k]
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
lca_matrix[k][j] = lca_matrix[j][k]
return lca_matrix
def to_bytes(self):
"""
Serialize, producing a byte string.

View File

@ -64,8 +64,9 @@ def parse_tree(doc, light=False, flat=False):
>>> trees = doc.print_tree()
[{'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Bob', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Bob'}, {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'dobj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'brought', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'bring'}, {'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}]
"""
doc_clone = Doc(doc.vocab, words=[w.text for w in doc])
doc_clone = Doc(doc.vocab, words=[w.text for w in doc])
doc_clone.from_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE],
doc.to_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE]))
doc.to_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE]))
merge_ents(doc_clone) # merge the entities into single tokens first
return [POS_tree(sent.root, light=light, flat=flat) for sent in doc_clone.sents]

View File

@ -130,6 +130,58 @@ cdef class Span:
return 0.0
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
def get_lca_matrix(self):
'''
Calculates the lowest common ancestor matrix
for a given Spacy span.
Returns LCA matrix containing the integer index
of the ancestor, or -1 if no common ancestor is
found (ex if span excludes a necessary ancestor).
Apologies about the recursion, but the
impact on performance is negligible given
the natural limitations on the depth of a typical human sentence.
'''
def __pairwise_lca(token_j, token_k, lca_matrix, margins):
offset = margins[0]
token_k_head = token_k.head if token_k.head.i in range(*margins) else token_k
token_j_head = token_j.head if token_j.head.i in range(*margins) else token_j
token_j_i = token_j.i - offset
token_k_i = token_k.i - offset
if lca_matrix[token_j_i][token_k_i] != -2:
return lca_matrix[token_j_i][token_k_i]
elif token_j == token_k:
lca_index = token_j_i
elif token_k_head == token_j:
lca_index = token_j_i
elif token_j_head == token_k:
lca_index = token_k_i
elif (token_j_head == token_j) and (token_k_head == token_k):
lca_index = -1
else:
lca_index = __pairwise_lca(token_j_head, token_k_head, lca_matrix, margins)
lca_matrix[token_j_i][token_k_i] = lca_index
lca_matrix[token_k_i][token_j_i] = lca_index
return lca_index
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
lca_matrix.fill(-2)
margins = [self.start, self.end]
for j in range(len(self)):
token_j = self[j]
for k in range(len(self)):
token_k = self[k]
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix, margins)
lca_matrix[k][j] = lca_matrix[j][k]
return lca_matrix
cpdef int _recalculate_indices(self) except -1:
if self.end > self.doc.length \
or self.doc.c[self.start].idx != self.start_char \
@ -230,7 +282,7 @@ cdef class Span:
# so it's okay once we have the Span objects. See Issue #375
spans = []
for start, end, label in self.doc.noun_chunks_iterator(self):
spans.append(Span(self, start, end, label=label))
spans.append(Span(self.doc, start, end, label=label))
for span in spans:
yield span

View File

@ -7,5 +7,6 @@ class Chinese(Language):
def make_doc(self, text):
import jieba
words = list(jieba.cut(text, cut_all=True))
words = list(jieba.cut(text, cut_all=False))
words=[x for x in words if x]
return Doc(self.vocab, words=words, spaces=[False]*len(words))

View File

@ -12,7 +12,7 @@
"COMPANY_URL": "https://explosion.ai",
"DEMOS_URL": "https://demos.explosion.ai",
"SPACY_VERSION": "1.8",
"SPACY_VERSION": "1.9",
"LATEST_NEWS": {
"url": "/docs/usage/models",
"title": "The first official Spanish model is here!"

View File

@ -21,7 +21,7 @@ p
+pos-row("$", "SYM", "SymType=currency", "symbol, currency")
+pos-row("ADD", "X", "", "email")
+pos-row("AFX", "ADJ", "Hyph=yes", "affix")
+pos-row("BES", "VERB", "", 'auxillary "be"')
+pos-row("BES", "VERB", "", 'auxiliary "be"')
+pos-row("CC", "CONJ", "ConjType=coor", "conjunction, coordinating")
+pos-row("CD", "NUM", "NumType=card", "cardinal number")
+pos-row("DT", "DET", "determiner")
@ -35,7 +35,7 @@ p
+pos-row("JJR", "ADJ", "Degree=comp", "adjective, comparative")
+pos-row("JJS", "ADJ", "Degree=sup", "adjective, superlative")
+pos-row("LS", "PUNCT", "NumType=ord", "list item marker")
+pos-row("MD", "VERB", "VerbType=mod", "verb, modal auxillary")
+pos-row("MD", "VERB", "VerbType=mod", "verb, modal auxiliary")
+pos-row("NFP", "PUNCT", "", "superfluous punctuation")
+pos-row("NIL", "", "", "missing tag")
+pos-row("NN", "NOUN", "Number=sing", "noun, singular or mass")

View File

@ -38,6 +38,11 @@ p
+h(2, "pos-tagging") Part-of-speech Tagging
+infobox("Tip: Understanding tags")
| In spaCy v1.9+, you can also use #[code spacy.explain()] to get the
| description for the string representation of a tag. For example,
| #[code spacy.explain("RB")] will return "adverb".
include _annotation/_pos-tags
+h(2, "lemmatization") Lemmatization
@ -65,10 +70,20 @@ p
+h(2, "dependency-parsing") Syntactic Dependency Parsing
+infobox("Tip: Understanding labels")
| In spaCy v1.9+, you can also use #[code spacy.explain()] to get the
| description for the string representation of a label. For example,
| #[code spacy.explain("prt")] will return "particle".
include _annotation/_dep-labels
+h(2, "named-entities") Named Entity Recognition
+infobox("Tip: Understanding entity types")
| In spaCy v1.9+, you can also use #[code spacy.explain()] to get the
| description for the string representation of an entity label. For example,
| #[code spacy.explain("LANGUAGE")] will return "any named language".
include _annotation/_named-entities
+h(2, "json-input") JSON input format for training

View File

@ -272,7 +272,7 @@ p Import the document contents from a binary string.
p
| Retokenize the document, such that the span at
| #[code doc.text[start_idx : end_idx]] is merged into a single token. If
| #[code start_idx] and #[end_idx] do not mark start and end token
| #[code start_idx] and #[code end_idx] do not mark start and end token
| boundaries, the document remains unchanged.
+table(["Name", "Type", "Description"])

View File

@ -18,7 +18,7 @@ p
| consisting of the words to be processed.
p
| Each state consists of the words on the stack (if any), which consistute
| Each state consists of the words on the stack (if any), which constitute
| the current entity being constructed. We also have the current word, and
| the two subsequent words. Finally, we also have the entities previously
| built.

View File

@ -6,7 +6,7 @@ include ../../_includes/_mixins
p
| Here's a quick comparison of the functionalities offered by spaCy,
| #[+a("https://github.com/tensorflow/models/tree/master/syntaxnet") SyntaxNet],
| #[+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") SyntaxNet],
| #[+a("http://www.nltk.org/py-modindex.html") NLTK] and
| #[+a("http://stanfordnlp.github.io/CoreNLP/") CoreNLP].
@ -107,7 +107,7 @@ p
p
| In 2016, Google released their
| #[+a("https://github.com/tensorflow/models/tree/master/syntaxnet") SyntaxNet]
| #[+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") SyntaxNet]
| library, setting a new state of the art for syntactic dependency parsing
| accuracy. SyntaxNet's algorithm is very similar to spaCy's. The main
| difference is that SyntaxNet uses a neural network while spaCy uses a
@ -129,7 +129,7 @@ p
+cell=data
+row
+cell #[+a("https://github.com/tensorflow/models/tree/master/syntaxnet") Parsey McParseface]
+cell #[+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") Parsey McParseface]
each data in [ 94.15, 89.08, 94.77 ]
+cell=data

View File

@ -222,7 +222,7 @@ p The sentence span that this span is a part of.
p
| The token within the span that's highest in the parse tree. If there's a
| tie, the earlist is prefered.
| tie, the earliest is preferred.
+table(["Name", "Type", "Description"])
+footrow

View File

@ -124,7 +124,7 @@ p
+cell #[code Lexeme]
+cell The lexeme indicated by the given ID.
+h(2, "iter") Span.__iter__
+h(2, "iter") Vocab.__iter__
+tag method
p Iterate over the lexemes in the vocabulary.

View File

@ -313,7 +313,7 @@
"author": "Clark Grubb"
},
"A very (very) short primer on spacy.io": {
"url": "http://blog.milonimrod.com/2015/10/a-very-very-short-primer-on-spacyio.html",
"url": "https://web.archive.org/web/20161219095416/http://blog.milonimrod.com/2015/10/a-very-very-short-primer-on-spacyio.html",
"author": "Nimrod Milo "
}
},

View File

@ -28,7 +28,7 @@ p
| #[a(href="#word-vectors") word vectors].
+item
| #[strong Set up] a #[a(href="#model-directory") model direcory] and #[strong train] the #[a(href="#train-tagger-parser") tagger and parser].
| #[strong Set up] a #[a(href="#model-directory") model directory] and #[strong train] the #[a(href="#train-tagger-parser") tagger and parser].
p
| For some languages, you may also want to develop a solution for
@ -303,7 +303,7 @@ p
p
| Because languages can vary in quite arbitrary ways, spaCy avoids
| organising the language data into an explicit inheritance hierarchy.
| Instead, reuseable functions and data are collected as atomic pieces in
| Instead, reusable functions and data are collected as atomic pieces in
| the #[code spacy.language_data] package.
+aside-code("Example").
@ -525,13 +525,13 @@ p
| └── oov_prob # optional
├── pos/ # optional
| ├── model # via nlp.tagger.model.dump(path)
| └── config.json # via Langage.train
| └── config.json # via Language.train
├── deps/ # optional
| ├── model # via nlp.parser.model.dump(path)
| └── config.json # via Langage.train
| └── config.json # via Language.train
└── ner/ # optional
├── model # via nlp.entity.model.dump(path)
└── config.json # via Langage.train
└── config.json # via Language.train
p
| This creates a spaCy data directory with a vocabulary model, ready to be

View File

@ -21,7 +21,7 @@ p
+h(2, "special-cases") Adding special case tokenization rules
p
| Most domains have at least some idiosyncracies that require custom
| Most domains have at least some idiosyncrasies that require custom
| tokenization rules. Here's how to add a special case rule to an existing
| #[+api("tokenizer") #[code Tokenizer]] instance:
@ -40,7 +40,9 @@ p
{
ORTH: u'me'}])
assert [w.text for w in nlp(u'gimme that')] == [u'gim', u'me', u'that']
assert [w.lemma_ for w in nlp(u'gimme that')] == [u'give', u'me', u'that']
# Pronoun lemma is returned as -PRON-
# More details please see: https://spacy.io/docs/usage/troubleshooting#pron-lemma
assert [w.lemma_ for w in nlp(u'gimme that')] == [u'give', u'-PRON-', u'that']
p
| The special case doesn't have to match an entire whitespace-delimited
@ -85,8 +87,8 @@ p
| algorithm in Python, optimized for readability rather than performance:
+code.
def tokenizer_pseudo_code(text, find_prefix, find_suffix,
find_infixes, special_cases):
def tokenizer_pseudo_code(text, special_cases,
find_prefix, find_suffix, find_infixes):
tokens = []
for substring in text.split(' '):
suffixes = []
@ -138,7 +140,7 @@ p
p
| Let's imagine you wanted to create a tokenizer for a new language. There
| are four things you would need to define:
| are five things you would need to define:
+list("numbers")
+item
@ -160,6 +162,11 @@ p
| A function #[code infixes_finditer], to handle non-whitespace
| separators, such as hyphens etc.
+item
| (Optional) A boolean function #[code token_match] matching strings
| that should never be split, overriding the previous rules.
| Useful for things like URLs or numbers.
p
| You shouldn't usually need to create a #[code Tokenizer] subclass.
| Standard usage is to use #[code re.compile()] to build a regular
@ -172,12 +179,18 @@ p
prefix_re = re.compile(r'''[\[\(&quot;']''')
suffix_re = re.compile(r'''[\]\)&quot;']''')
infix_re = re.compile(r'''[-~]''')
simple_url_re = re.compile(r'''^https?://''')
def create_tokenizer(nlp):
return Tokenizer(nlp.vocab,
rules={},
prefix_search=prefix_re.search,
suffix_search=suffix_re.search)
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=simple_url_re.match
)
nlp = spacy.load('en', tokenizer=create_make_doc)
nlp = spacy.load('en', create_make_doc=create_tokenizer)
p
| If you need to subclass the tokenizer instead, the relevant methods to
@ -214,7 +227,7 @@ p
def __call__(self, text):
words = text.split(' ')
# All tokens 'own' a subsequent space character in this tokenizer
spaces = [True] * len(word)
spaces = [True] * len(words)
return Doc(self.vocab, words=words, spaces=spaces)
p

View File

@ -87,7 +87,7 @@ p
| The other way to install spaCy is to clone its
| #[+a(gh("spaCy")) GitHub repository] and build it from source. That is
| the common way if you want to make changes to the code base. You'll need to
| make sure that you have a development enviroment consisting of a Python
| make sure that you have a development environment consisting of a Python
| distribution including header files, a compiler,
| #[+a("https://pip.pypa.io/en/latest/installing/") pip],
| #[+a("https://virtualenv.pypa.io/") virtualenv] and

View File

@ -83,7 +83,7 @@ p
+h(2, "examples-word-vectors") Word vectors
+code.
doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
doc = nlp(u"Apples and oranges are similar. Boots and hippos aren't.")
apples = doc[0]
oranges = doc[2]

View File

@ -67,7 +67,7 @@ p
python -m spacy download en_core_web_md
# download exact model version (doesn't create shortcut link)
python -m spacy download en_core_web_md-1.2.0 --direct
python -m spacy download en_core_web_md-1.2.1 --direct
p
| The download command will #[+a("#download-pip") install the model] via
@ -96,10 +96,10 @@ p
+code(false, "bash").
# with external URL
pip install #{gh("spacy-models")}/releases/download/en_core_web_md-1.2.0/en_core_web_md-1.2.0.tar.gz
pip install #{gh("spacy-models")}/releases/download/en_core_web_md-1.2.1/en_core_web_md-1.2.1.tar.gz
# with local file
pip install /Users/you/en_core_web_md-1.2.0.tar.gz
pip install /Users/you/en_core_web_md-1.2.1.tar.gz
p
| By default, this will install the model into your #[code site-packages]
@ -198,12 +198,43 @@ p
nlp = en_core_web_md.load()
doc = nlp(u'This is a sentence.')
+h(3, "models-download") Downloading and requiring model dependencies
p
| spaCy's built-in #[+api("cli#download") #[code download]] command
| is mostly intended as a convenient, interactive wrapper. It performs
| compatibility checks and prints detailed error messages and warnings.
| However, if you're downloading models as part of an automated build
| process, this only adds an unnecessary layer of complexity. If you know
| which models your application needs, you should be specifying them directly.
+aside("Prevent re-downloading models")
| If you're installing a model from a URL, pip will usually re-download and
| re-install the package, even if you already have a matching
| version installed. To prevent this, simply add #[code #egg=] and the
| package name after the URL, e.g. #[code #egg=en_core_web_sm] or
| #[code #egg=en_core_web_sm-1.2.0]. This tells pip which package and version
| you're trying to download, and will skip the package if a matching
| installation is found.
p
| Because all models are valid Python packages, you can add them to your
| application's #[code requirements.txt]. If you're running your own
| internal PyPi installation, you can simply upload the models there. pip's
| #[+a("https://pip.pypa.io/en/latest/reference/pip_install/#requirements-file-format") requirements file format]
| supports both package names to download via a PyPi server, as well as direct
| URLs.
+code("requirements.txt", "text").
spacy&gt;=1.8.0,&lt;2.0.0
-e #{gh("spacy-models")}/releases/download/en_core_web_sm-1.2.0/en_core_web_sm-1.2.0.tar.gz#egg=en_core_web_sm-1.2.0
+h(2, "own-models") Using your own models
p
| If you've trained your own model, for example for
| #[+a("/docs/usage/adding-languages") additional languages] or
| #[+a("/docs/usage/train-ner") custom named entities], you can save its
| #[+a("/docs/usage/training-ner") custom named entities], you can save its
| state using the #[code Language.save_to_directory()] method. To make the
| model more convenient to deploy, we recommend wrapping it as a Python
| package.

View File

@ -50,7 +50,7 @@ p
+cell #[code VerbForm=Fin], #[code Mood=Ind], #[code Tense=Pres]
+row
+cell I read the paper yesteday
+cell I read the paper yesterday
+cell read
+cell read
+cell verb

View File

@ -98,7 +98,8 @@ p
| important metadata, e.g. a JSON document. To pair up the metadata
| with the processed #[code Doc] object, you should use the tee
| function to split the generator in two, and then #[code izip] the
| extra stream to the document stream.
| extra stream to the document stream. Here's an
| #[a(href="https://github.com/explosion/spaCy/issues/172#issuecomment-183963403")= "example"]
+h(2, "own-annotations") Bringing your own annotations

View File

@ -28,7 +28,7 @@ p
| and walk you through generating the meta data. You can also create the
| meta.json manually and place it in the model data directory, or supply a
| path to it using the #[code --meta] flag. For more info on this, see the
| #[+a("/docs/usage/cli/#package") #[code package] command] documentation.
| #[+a("/docs/usage/cli#package") #[code package] command] documentation.
+aside-code("meta.json", "json").
{
@ -58,7 +58,7 @@ p This command will create a model package directory that should look like this:
p
| You can also find templates for all files in our
| #[+a(gh("spacy-dev-resouces", "templates/model")) spaCy dev resources].
| #[+a(gh("spacy-dev-resources", "templates/model")) spaCy dev resources].
| If you're creating the package manually, keep in mind that the directories
| need to be named according to the naming conventions of
| #[code [language]_[name]] and #[code [language]_[name]-[version]]. The

View File

@ -150,8 +150,8 @@ p
for itn in range(20):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
gold = GoldParse(doc, entities=entity_offsets)
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.tagger(doc)
loss = nlp.entity.update(doc, gold)
nlp.end_training()

View File

@ -33,12 +33,14 @@ p
from spacy.vocab import Vocab
from spacy.pipeline import EntityRecognizer
from spacy.tokens import Doc
from spacy.gold import GoldParse
vocab = Vocab()
entity = EntityRecognizer(vocab, entity_types=['PERSON', 'LOC'])
doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?'])
entity.update(doc, ['O', 'O', 'B-PERSON', 'L-PERSON', 'O'])
gold = GoldParse(doc, entities=['O', 'O', 'B-PERSON', 'L-PERSON', 'O'])
entity.update(doc, gold)
entity.model.end_training()
@ -65,13 +67,14 @@ p.o-inline-list
from spacy.vocab import Vocab
from spacy.pipeline import DependencyParser
from spacy.tokens import Doc
from spacy.gold import GoldParse
vocab = Vocab()
parser = DependencyParser(vocab, labels=['nsubj', 'compound', 'dobj', 'punct'])
doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?'])
parser.update(doc, [(1, 'nsubj'), (1, 'ROOT'), (3, 'compound'), (1, 'dobj'),
(1, 'punct')])
gold = GoldParse(doc, [1,1,3,1,1], ['nsubj', 'ROOT', 'compound', 'dobj', 'punct'])
parser.update(doc, gold)
parser.model.end_training()
@ -120,7 +123,7 @@ p
+code.
from spacy.vocab import Vocab
from spacy.pipeline import Tagger
from spacy.tagger import Tagger
from spacy.tagger import P2_orth, P1_orth
from spacy.tagger import P2_cluster, P1_cluster, W_orth, N1_orth, N2_orth

View File

@ -21,10 +21,12 @@ p
+code.
import numpy
import spacy
nlp = spacy.load('en')
apples, and_, oranges = nlp(u'apples and oranges')
print(apples.vector.shape)
# (1,)
# (300,)
apples.similarity(oranges)
p