diff --git a/bin/wiki_entity_linking/kb_creator.py b/bin/wiki_entity_linking/kb_creator.py index 5b25475b2..d88cf9c7e 100644 --- a/bin/wiki_entity_linking/kb_creator.py +++ b/bin/wiki_entity_linking/kb_creator.py @@ -1,16 +1,14 @@ # coding: utf-8 from __future__ import unicode_literals -from .train_descriptions import EntityEncoder -from . import wikidata_processor as wd, wikipedia_processor as wp +from bin.wiki_entity_linking.train_descriptions import EntityEncoder +from bin.wiki_entity_linking import wikidata_processor as wd, wikipedia_processor as wp from spacy.kb import KnowledgeBase import csv import datetime - -INPUT_DIM = 300 # dimension of pre-trained input vectors -DESC_WIDTH = 64 # dimension of output entity vectors +from spacy import Errors def create_kb( @@ -23,17 +21,27 @@ def create_kb( count_input, prior_prob_input, wikidata_input, + entity_vector_length, + limit=None, + read_raw_data=True, ): # Create the knowledge base from Wikidata entries - kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=DESC_WIDTH) + kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=entity_vector_length) + + # check the length of the nlp vectors + if "vectors" in nlp.meta and nlp.vocab.vectors.size: + input_dim = nlp.vocab.vectors_length + print("Loaded pre-trained vectors of size %s" % input_dim) + else: + raise ValueError(Errors.E155) # disable this part of the pipeline when rerunning the KB generation from preprocessed files - read_raw_data = True - if read_raw_data: print() - print(" * _read_wikidata_entities", datetime.datetime.now()) - title_to_id, id_to_descr = wd.read_wikidata_entities_json(wikidata_input) + print(now(), " * read wikidata entities:") + title_to_id, id_to_descr = wd.read_wikidata_entities_json( + wikidata_input, limit=limit + ) # write the title-ID and ID-description mappings to file _write_entity_files( @@ -46,7 +54,7 @@ def create_kb( id_to_descr = get_id_to_description(entity_descr_output) print() - print(" * _get_entity_frequencies", datetime.datetime.now()) + print(now(), " * get entity frequencies:") print() entity_frequencies = wp.get_all_frequencies(count_input=count_input) @@ -65,40 +73,41 @@ def create_kb( filtered_title_to_id[title] = entity print(len(title_to_id.keys()), "original titles") - print("kept", len(filtered_title_to_id.keys()), " with frequency", min_entity_freq) + kept_nr = len(filtered_title_to_id.keys()) + print("kept", kept_nr, "entities with min. frequency", min_entity_freq) print() - print(" * train entity encoder", datetime.datetime.now()) + print(now(), " * train entity encoder:") print() - encoder = EntityEncoder(nlp, INPUT_DIM, DESC_WIDTH) + encoder = EntityEncoder(nlp, input_dim, entity_vector_length) encoder.train(description_list=description_list, to_print=True) print() - print(" * get entity embeddings", datetime.datetime.now()) + print(now(), " * get entity embeddings:") print() embeddings = encoder.apply_encoder(description_list) - print() - print(" * adding", len(entity_list), "entities", datetime.datetime.now()) + print(now(), " * adding", len(entity_list), "entities") kb.set_entities( entity_list=entity_list, freq_list=frequency_list, vector_list=embeddings ) - print() - print(" * adding aliases", datetime.datetime.now()) - print() - _add_aliases( + alias_cnt = _add_aliases( kb, title_to_id=filtered_title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ, prior_prob_input=prior_prob_input, ) + print() + print(now(), " * adding", alias_cnt, "aliases") + print() print() - print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases()) + print("# of entities in kb:", kb.get_size_entities()) + print("# of aliases in kb:", kb.get_size_aliases()) - print("done with kb", datetime.datetime.now()) + print(now(), "Done with kb") return kb @@ -140,6 +149,7 @@ def get_id_to_description(entity_descr_output): def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_input): wp_titles = title_to_id.keys() + cnt = 0 # adding aliases with prior probabilities # we can read this file sequentially, it's sorted by alias, and then by count @@ -176,6 +186,7 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_in entities=selected_entities, probabilities=prior_probs, ) + cnt += 1 except ValueError as e: print(e) total_count = 0 @@ -190,3 +201,8 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_in previous_alias = new_alias line = prior_file.readline() + return cnt + + +def now(): + return datetime.datetime.now() diff --git a/bin/wiki_entity_linking/train_descriptions.py b/bin/wiki_entity_linking/train_descriptions.py index 6a4d046e5..0663296e4 100644 --- a/bin/wiki_entity_linking/train_descriptions.py +++ b/bin/wiki_entity_linking/train_descriptions.py @@ -18,15 +18,19 @@ class EntityEncoder: """ DROP = 0 - EPOCHS = 5 - STOP_THRESHOLD = 0.04 - BATCH_SIZE = 1000 - def __init__(self, nlp, input_dim, desc_width): + # Set min. acceptable loss to avoid a 'mean of empty slice' warning by numpy + MIN_LOSS = 0.01 + + # Reasonable default to stop training when things are not improving + MAX_NO_IMPROVEMENT = 20 + + def __init__(self, nlp, input_dim, desc_width, epochs=5): self.nlp = nlp self.input_dim = input_dim self.desc_width = desc_width + self.epochs = epochs def apply_encoder(self, description_list): if self.encoder is None: @@ -46,32 +50,41 @@ class EntityEncoder: start = start + batch_size stop = min(stop + batch_size, len(description_list)) + print("encoded:", stop, "entities") return encodings def train(self, description_list, to_print=False): processed, loss = self._train_model(description_list) if to_print: - print("Trained on", processed, "entities across", self.EPOCHS, "epochs") + print( + "Trained entity descriptions on", + processed, + "(non-unique) entities across", + self.epochs, + "epochs", + ) print("Final loss:", loss) def _train_model(self, description_list): - # TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy - + best_loss = 1.0 + iter_since_best = 0 self._build_network(self.input_dim, self.desc_width) processed = 0 loss = 1 - descriptions = description_list.copy() # copy this list so that shuffling does not affect other functions + # copy this list so that shuffling does not affect other functions + descriptions = description_list.copy() + to_continue = True - for i in range(self.EPOCHS): + for i in range(self.epochs): shuffle(descriptions) batch_nr = 0 start = 0 stop = min(self.BATCH_SIZE, len(descriptions)) - while loss > self.STOP_THRESHOLD and start < len(descriptions): + while to_continue and start < len(descriptions): batch = [] for descr in descriptions[start:stop]: doc = self.nlp(descr) @@ -79,9 +92,24 @@ class EntityEncoder: batch.append(doc_vector) loss = self._update(batch) - print(i, batch_nr, loss) + if batch_nr % 25 == 0: + print("loss:", loss) processed += len(batch) + # in general, continue training if we haven't reached our ideal min yet + to_continue = loss > self.MIN_LOSS + + # store the best loss and track how long it's been + if loss < best_loss: + best_loss = loss + iter_since_best = 0 + else: + iter_since_best += 1 + + # stop learning if we haven't seen improvement since the last few iterations + if iter_since_best > self.MAX_NO_IMPROVEMENT: + to_continue = False + batch_nr += 1 start = start + self.BATCH_SIZE stop = min(stop + self.BATCH_SIZE, len(descriptions)) @@ -103,14 +131,16 @@ class EntityEncoder: def _build_network(self, orig_width, hidden_with): with Model.define_operators({">>": chain}): # very simple encoder-decoder model - self.encoder = ( - Affine(hidden_with, orig_width) + self.encoder = Affine(hidden_with, orig_width) + self.model = self.encoder >> zero_init( + Affine(orig_width, hidden_with, drop_factor=0.0) ) - self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0)) self.sgd = create_default_optimizer(self.model.ops) def _update(self, vectors): - predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP) + predictions, bp_model = self.model.begin_update( + np.asarray(vectors), drop=self.DROP + ) loss, d_scores = self._get_loss(scores=predictions, golds=np.asarray(vectors)) bp_model(d_scores, sgd=self.sgd) return loss / len(vectors) diff --git a/bin/wiki_entity_linking/training_set_creator.py b/bin/wiki_entity_linking/training_set_creator.py index b090d7659..7f45d9435 100644 --- a/bin/wiki_entity_linking/training_set_creator.py +++ b/bin/wiki_entity_linking/training_set_creator.py @@ -21,9 +21,9 @@ def now(): return datetime.datetime.now() -def create_training(wikipedia_input, entity_def_input, training_output): +def create_training(wikipedia_input, entity_def_input, training_output, limit=None): wp_to_id = kb_creator.get_entity_to_id(entity_def_input) - _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None) + _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=limit) def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None): @@ -128,6 +128,7 @@ def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=N line = file.readline() cnt += 1 + print(now(), "processed", cnt, "lines of Wikipedia dump") text_regex = re.compile(r"(?<=).*(?= 0: + el_pipe.cfg["incl_context"] = True + el_pipe.cfg["incl_prior"] = True + dev_acc_context, _ = _measure_acc(dev_data, el_pipe) + losses["entity_linker"] = losses["entity_linker"] / batchnr + print( + "Epoch, train loss", + itn, + round(losses["entity_linker"], 2), + " / dev accuracy avg", + round(dev_acc_context, 3), + ) + + # STEP 6: measure the performance of our trained pipe on an independent dev set + print() + if len(dev_data): + print() + print(now(), "STEP 6: performance measurement of Entity Linking pipe") + print() + + counts, acc_r, acc_r_d, acc_p, acc_p_d, acc_o, acc_o_d = _measure_baselines( + dev_data, kb + ) + print("dev counts:", sorted(counts.items(), key=lambda x: x[0])) + + oracle_by_label = [(x, round(y, 3)) for x, y in acc_o_d.items()] + print("dev accuracy oracle:", round(acc_o, 3), oracle_by_label) + + random_by_label = [(x, round(y, 3)) for x, y in acc_r_d.items()] + print("dev accuracy random:", round(acc_r, 3), random_by_label) + + prior_by_label = [(x, round(y, 3)) for x, y in acc_p_d.items()] + print("dev accuracy prior:", round(acc_p, 3), prior_by_label) + + # using only context + el_pipe.cfg["incl_context"] = True + el_pipe.cfg["incl_prior"] = False + dev_acc_context, dev_acc_cont_d = _measure_acc(dev_data, el_pipe) + context_by_label = [(x, round(y, 3)) for x, y in dev_acc_cont_d.items()] + print("dev accuracy context:", round(dev_acc_context, 3), context_by_label) + + # measuring combined accuracy (prior + context) + el_pipe.cfg["incl_context"] = True + el_pipe.cfg["incl_prior"] = True + dev_acc_combo, dev_acc_combo_d = _measure_acc(dev_data, el_pipe) + combo_by_label = [(x, round(y, 3)) for x, y in dev_acc_combo_d.items()] + print("dev accuracy prior+context:", round(dev_acc_combo, 3), combo_by_label) + + # STEP 7: apply the EL pipe on a toy example + print() + print(now(), "STEP 7: applying Entity Linking to toy example") + print() + run_el_toy_example(nlp=nlp) + + # STEP 8: write the NLP pipeline (including entity linker) to file + if output_dir: + print() + nlp_loc = output_dir / "nlp" + print(now(), "STEP 8: Writing trained NLP to", nlp_loc) + nlp.to_disk(nlp_loc) + print() + + print() + print(now(), "Done!") + + +def _measure_acc(data, el_pipe=None, error_analysis=False): + # If the docs in the data require further processing with an entity linker, set el_pipe + correct_by_label = dict() + incorrect_by_label = dict() + + docs = [d for d, g in data if len(d) > 0] + if el_pipe is not None: + docs = list(el_pipe.pipe(docs)) + golds = [g for d, g in data if len(d) > 0] + + for doc, gold in zip(docs, golds): + try: + correct_entries_per_article = dict() + for entity, kb_dict in gold.links.items(): + start, end = entity + # only evaluating on positive examples + for gold_kb, value in kb_dict.items(): + if value: + offset = _offset(start, end) + correct_entries_per_article[offset] = gold_kb + + for ent in doc.ents: + ent_label = ent.label_ + pred_entity = ent.kb_id_ + start = ent.start_char + end = ent.end_char + offset = _offset(start, end) + gold_entity = correct_entries_per_article.get(offset, None) + # the gold annotations are not complete so we can't evaluate missing annotations as 'wrong' + if gold_entity is not None: + if gold_entity == pred_entity: + correct = correct_by_label.get(ent_label, 0) + correct_by_label[ent_label] = correct + 1 + else: + incorrect = incorrect_by_label.get(ent_label, 0) + incorrect_by_label[ent_label] = incorrect + 1 + if error_analysis: + print(ent.text, "in", doc) + print( + "Predicted", + pred_entity, + "should have been", + gold_entity, + ) + print() + + except Exception as e: + print("Error assessing accuracy", e) + + acc, acc_by_label = calculate_acc(correct_by_label, incorrect_by_label) + return acc, acc_by_label + + +def _measure_baselines(data, kb): + # Measure 3 performance baselines: random selection, prior probabilities, and 'oracle' prediction for upper bound + counts_d = dict() + + random_correct_d = dict() + random_incorrect_d = dict() + + oracle_correct_d = dict() + oracle_incorrect_d = dict() + + prior_correct_d = dict() + prior_incorrect_d = dict() + + docs = [d for d, g in data if len(d) > 0] + golds = [g for d, g in data if len(d) > 0] + + for doc, gold in zip(docs, golds): + try: + correct_entries_per_article = dict() + for entity, kb_dict in gold.links.items(): + start, end = entity + for gold_kb, value in kb_dict.items(): + # only evaluating on positive examples + if value: + offset = _offset(start, end) + correct_entries_per_article[offset] = gold_kb + + for ent in doc.ents: + label = ent.label_ + start = ent.start_char + end = ent.end_char + offset = _offset(start, end) + gold_entity = correct_entries_per_article.get(offset, None) + + # the gold annotations are not complete so we can't evaluate missing annotations as 'wrong' + if gold_entity is not None: + counts_d[label] = counts_d.get(label, 0) + 1 + candidates = kb.get_candidates(ent.text) + oracle_candidate = "" + best_candidate = "" + random_candidate = "" + if candidates: + scores = [] + + for c in candidates: + scores.append(c.prior_prob) + if c.entity_ == gold_entity: + oracle_candidate = c.entity_ + + best_index = scores.index(max(scores)) + best_candidate = candidates[best_index].entity_ + random_candidate = random.choice(candidates).entity_ + + if gold_entity == best_candidate: + prior_correct_d[label] = prior_correct_d.get(label, 0) + 1 + else: + prior_incorrect_d[label] = prior_incorrect_d.get(label, 0) + 1 + + if gold_entity == random_candidate: + random_correct_d[label] = random_correct_d.get(label, 0) + 1 + else: + random_incorrect_d[label] = random_incorrect_d.get(label, 0) + 1 + + if gold_entity == oracle_candidate: + oracle_correct_d[label] = oracle_correct_d.get(label, 0) + 1 + else: + oracle_incorrect_d[label] = oracle_incorrect_d.get(label, 0) + 1 + + except Exception as e: + print("Error assessing accuracy", e) + + acc_prior, acc_prior_d = calculate_acc(prior_correct_d, prior_incorrect_d) + acc_rand, acc_rand_d = calculate_acc(random_correct_d, random_incorrect_d) + acc_oracle, acc_oracle_d = calculate_acc(oracle_correct_d, oracle_incorrect_d) + + return ( + counts_d, + acc_rand, + acc_rand_d, + acc_prior, + acc_prior_d, + acc_oracle, + acc_oracle_d, + ) + + +def _offset(start, end): + return "{}_{}".format(start, end) + + +def calculate_acc(correct_by_label, incorrect_by_label): + acc_by_label = dict() + total_correct = 0 + total_incorrect = 0 + all_keys = set() + all_keys.update(correct_by_label.keys()) + all_keys.update(incorrect_by_label.keys()) + for label in sorted(all_keys): + correct = correct_by_label.get(label, 0) + incorrect = incorrect_by_label.get(label, 0) + total_correct += correct + total_incorrect += incorrect + if correct == incorrect == 0: + acc_by_label[label] = 0 + else: + acc_by_label[label] = correct / (correct + incorrect) + acc = 0 + if not (total_correct == total_incorrect == 0): + acc = total_correct / (total_correct + total_incorrect) + return acc, acc_by_label + + +def check_kb(kb): + for mention in ("Bush", "Douglas Adams", "Homer", "Brazil", "China"): + candidates = kb.get_candidates(mention) + + print("generating candidates for " + mention + " :") + for c in candidates: + print( + " ", + c.prior_prob, + c.alias_, + "-->", + c.entity_ + " (freq=" + str(c.entity_freq) + ")", + ) + print() + + +def run_el_toy_example(nlp): + text = ( + "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " + "Douglas reminds us to always bring our towel, even in China or Brazil. " + "The main character in Doug's novel is the man Arthur Dent, " + "but Dougledydoug doesn't write about George Washington or Homer Simpson." + ) + doc = nlp(text) + print(text) + for ent in doc.ents: + print(" ent", ent.text, ent.label_, ent.kb_id_) + print() + + +if __name__ == "__main__": + plac.call(main) diff --git a/bin/wiki_entity_linking/wikipedia_processor.py b/bin/wiki_entity_linking/wikipedia_processor.py index 80d75b013..fca600368 100644 --- a/bin/wiki_entity_linking/wikipedia_processor.py +++ b/bin/wiki_entity_linking/wikipedia_processor.py @@ -120,7 +120,7 @@ def now(): return datetime.datetime.now() -def read_prior_probs(wikipedia_input, prior_prob_output): +def read_prior_probs(wikipedia_input, prior_prob_output, limit=None): """ Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities. The full file takes about 2h to parse 1100M lines. @@ -129,9 +129,9 @@ def read_prior_probs(wikipedia_input, prior_prob_output): with bz2.open(wikipedia_input, mode="rb") as file: line = file.readline() cnt = 0 - while line: - if cnt % 5000000 == 0: - print(now(), "processed", cnt, "lines of Wikipedia dump") + while line and (not limit or cnt < limit): + if cnt % 25000000 == 0: + print(now(), "processed", cnt, "lines of Wikipedia XML dump") clean_line = line.strip().decode("utf-8") aliases, entities, normalizations = get_wp_links(clean_line) @@ -141,6 +141,7 @@ def read_prior_probs(wikipedia_input, prior_prob_output): line = file.readline() cnt += 1 + print(now(), "processed", cnt, "lines of Wikipedia XML dump") # write all aliases and their entities and count occurrences to file with prior_prob_output.open("w", encoding="utf8") as outputfile: diff --git a/examples/pipeline/dummy_entity_linking.py b/examples/pipeline/dummy_entity_linking.py deleted file mode 100644 index 6dde616b8..000000000 --- a/examples/pipeline/dummy_entity_linking.py +++ /dev/null @@ -1,75 +0,0 @@ -# coding: utf-8 -from __future__ import unicode_literals - -"""Demonstrate how to build a simple knowledge base and run an Entity Linking algorithm. -Currently still a bit of a dummy algorithm: taking simply the entity with highest probability for a given alias -""" -import spacy -from spacy.kb import KnowledgeBase - - -def create_kb(vocab): - kb = KnowledgeBase(vocab=vocab, entity_vector_length=1) - - # adding entities - entity_0 = "Q1004791_Douglas" - print("adding entity", entity_0) - kb.add_entity(entity=entity_0, freq=0.5, entity_vector=[0]) - - entity_1 = "Q42_Douglas_Adams" - print("adding entity", entity_1) - kb.add_entity(entity=entity_1, freq=0.5, entity_vector=[1]) - - entity_2 = "Q5301561_Douglas_Haig" - print("adding entity", entity_2) - kb.add_entity(entity=entity_2, freq=0.5, entity_vector=[2]) - - # adding aliases - print() - alias_0 = "Douglas" - print("adding alias", alias_0) - kb.add_alias(alias=alias_0, entities=[entity_0, entity_1, entity_2], probabilities=[0.6, 0.1, 0.2]) - - alias_1 = "Douglas Adams" - print("adding alias", alias_1) - kb.add_alias(alias=alias_1, entities=[entity_1], probabilities=[0.9]) - - print() - print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases()) - - return kb - - -def add_el(kb, nlp): - el_pipe = nlp.create_pipe(name='entity_linker', config={"context_width": 64}) - el_pipe.set_kb(kb) - nlp.add_pipe(el_pipe, last=True) - nlp.begin_training() - el_pipe.context_weight = 0 - el_pipe.prior_weight = 1 - - for alias in ["Douglas Adams", "Douglas"]: - candidates = nlp.linker.kb.get_candidates(alias) - print() - print(len(candidates), "candidate(s) for", alias, ":") - for c in candidates: - print(" ", c.entity_, c.prior_prob) - - text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \ - "Douglas reminds us to always bring our towel. " \ - "The main character in Doug's novel is called Arthur Dent." - doc = nlp(text) - - print() - for token in doc: - print("token", token.text, token.ent_type_, token.ent_kb_id_) - - print() - for ent in doc.ents: - print("ent", ent.text, ent.label_, ent.kb_id_) - - -if __name__ == "__main__": - my_nlp = spacy.load('en_core_web_sm') - my_kb = create_kb(my_nlp.vocab) - add_el(my_kb, my_nlp) diff --git a/examples/pipeline/wikidata_entity_linking.py b/examples/pipeline/wikidata_entity_linking.py deleted file mode 100644 index 04e5bce6d..000000000 --- a/examples/pipeline/wikidata_entity_linking.py +++ /dev/null @@ -1,514 +0,0 @@ -# coding: utf-8 -from __future__ import unicode_literals - -import os -from os import path -import random -import datetime -from pathlib import Path - -from bin.wiki_entity_linking import wikipedia_processor as wp -from bin.wiki_entity_linking import training_set_creator, kb_creator -from bin.wiki_entity_linking.kb_creator import DESC_WIDTH - -import spacy -from spacy.kb import KnowledgeBase -from spacy.util import minibatch, compounding - -""" -Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm. -""" - -ROOT_DIR = Path("C:/Users/Sofie/Documents/data/") -OUTPUT_DIR = ROOT_DIR / "wikipedia" -TRAINING_DIR = OUTPUT_DIR / "training_data_nel" - -PRIOR_PROB = OUTPUT_DIR / "prior_prob.csv" -ENTITY_COUNTS = OUTPUT_DIR / "entity_freq.csv" -ENTITY_DEFS = OUTPUT_DIR / "entity_defs.csv" -ENTITY_DESCR = OUTPUT_DIR / "entity_descriptions.csv" - -KB_DIR = OUTPUT_DIR / "kb_1" -KB_FILE = "kb" -NLP_1_DIR = OUTPUT_DIR / "nlp_1" -NLP_2_DIR = OUTPUT_DIR / "nlp_2" - -# get latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/ -WIKIDATA_JSON = ROOT_DIR / "wikidata" / "wikidata-20190304-all.json.bz2" - -# get enwiki-latest-pages-articles-multistream.xml.bz2 from https://dumps.wikimedia.org/enwiki/latest/ -ENWIKI_DUMP = ( - ROOT_DIR / "wikipedia" / "enwiki-20190320-pages-articles-multistream.xml.bz2" -) - -# KB construction parameters -MAX_CANDIDATES = 10 -MIN_ENTITY_FREQ = 20 -MIN_PAIR_OCC = 5 - -# model training parameters -EPOCHS = 10 -DROPOUT = 0.5 -LEARN_RATE = 0.005 -L2 = 1e-6 -CONTEXT_WIDTH = 128 - - -def now(): - return datetime.datetime.now() - - -def run_pipeline(): - # set the appropriate booleans to define which parts of the pipeline should be re(run) - print("START", now()) - print() - nlp_1 = spacy.load("en_core_web_lg") - nlp_2 = None - kb_2 = None - - # one-time methods to create KB and write to file - to_create_prior_probs = False - to_create_entity_counts = False - to_create_kb = False - - # read KB back in from file - to_read_kb = True - to_test_kb = False - - # create training dataset - create_wp_training = False - - # train the EL pipe - train_pipe = True - measure_performance = True - - # test the EL pipe on a simple example - to_test_pipeline = True - - # write the NLP object, read back in and test again - to_write_nlp = True - to_read_nlp = True - test_from_file = False - - # STEP 1 : create prior probabilities from WP (run only once) - if to_create_prior_probs: - print("STEP 1: to_create_prior_probs", now()) - wp.read_prior_probs(ENWIKI_DUMP, PRIOR_PROB) - print() - - # STEP 2 : deduce entity frequencies from WP (run only once) - if to_create_entity_counts: - print("STEP 2: to_create_entity_counts", now()) - wp.write_entity_counts(PRIOR_PROB, ENTITY_COUNTS, to_print=False) - print() - - # STEP 3 : create KB and write to file (run only once) - if to_create_kb: - print("STEP 3a: to_create_kb", now()) - kb_1 = kb_creator.create_kb( - nlp=nlp_1, - max_entities_per_alias=MAX_CANDIDATES, - min_entity_freq=MIN_ENTITY_FREQ, - min_occ=MIN_PAIR_OCC, - entity_def_output=ENTITY_DEFS, - entity_descr_output=ENTITY_DESCR, - count_input=ENTITY_COUNTS, - prior_prob_input=PRIOR_PROB, - wikidata_input=WIKIDATA_JSON, - ) - print("kb entities:", kb_1.get_size_entities()) - print("kb aliases:", kb_1.get_size_aliases()) - print() - - print("STEP 3b: write KB and NLP", now()) - - if not path.exists(KB_DIR): - os.makedirs(KB_DIR) - kb_1.dump(KB_DIR / KB_FILE) - nlp_1.to_disk(NLP_1_DIR) - print() - - # STEP 4 : read KB back in from file - if to_read_kb: - print("STEP 4: to_read_kb", now()) - nlp_2 = spacy.load(NLP_1_DIR) - kb_2 = KnowledgeBase(vocab=nlp_2.vocab, entity_vector_length=DESC_WIDTH) - kb_2.load_bulk(KB_DIR / KB_FILE) - print("kb entities:", kb_2.get_size_entities()) - print("kb aliases:", kb_2.get_size_aliases()) - print() - - # test KB - if to_test_kb: - check_kb(kb_2) - print() - - # STEP 5: create a training dataset from WP - if create_wp_training: - print("STEP 5: create training dataset", now()) - training_set_creator.create_training( - wikipedia_input=ENWIKI_DUMP, - entity_def_input=ENTITY_DEFS, - training_output=TRAINING_DIR, - ) - - # STEP 6: create and train the entity linking pipe - if train_pipe: - print("STEP 6: training Entity Linking pipe", now()) - type_to_int = {label: i for i, label in enumerate(nlp_2.entity.labels)} - print(" -analysing", len(type_to_int), "different entity types") - el_pipe = nlp_2.create_pipe( - name="entity_linker", - config={ - "context_width": CONTEXT_WIDTH, - "pretrained_vectors": nlp_2.vocab.vectors.name, - "type_to_int": type_to_int, - }, - ) - el_pipe.set_kb(kb_2) - nlp_2.add_pipe(el_pipe, last=True) - - other_pipes = [pipe for pipe in nlp_2.pipe_names if pipe != "entity_linker"] - with nlp_2.disable_pipes(*other_pipes): # only train Entity Linking - optimizer = nlp_2.begin_training() - optimizer.learn_rate = LEARN_RATE - optimizer.L2 = L2 - - # define the size (nr of entities) of training and dev set - train_limit = 5000 - dev_limit = 5000 - - # for training, get pos & neg instances that correspond to entries in the kb - train_data = training_set_creator.read_training( - nlp=nlp_2, - training_dir=TRAINING_DIR, - dev=False, - limit=train_limit, - kb=el_pipe.kb, - ) - - print("Training on", len(train_data), "articles") - print() - - # for testing, get all pos instances, whether or not they are in the kb - dev_data = training_set_creator.read_training( - nlp=nlp_2, training_dir=TRAINING_DIR, dev=True, limit=dev_limit, kb=None - ) - - print("Dev testing on", len(dev_data), "articles") - print() - - if not train_data: - print("Did not find any training data") - else: - for itn in range(EPOCHS): - random.shuffle(train_data) - losses = {} - batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001)) - batchnr = 0 - - with nlp_2.disable_pipes(*other_pipes): - for batch in batches: - try: - docs, golds = zip(*batch) - nlp_2.update( - docs=docs, - golds=golds, - sgd=optimizer, - drop=DROPOUT, - losses=losses, - ) - batchnr += 1 - except Exception as e: - print("Error updating batch:", e) - - if batchnr > 0: - el_pipe.cfg["context_weight"] = 1 - el_pipe.cfg["prior_weight"] = 1 - dev_acc_context, _ = _measure_acc(dev_data, el_pipe) - losses["entity_linker"] = losses["entity_linker"] / batchnr - print( - "Epoch, train loss", - itn, - round(losses["entity_linker"], 2), - " / dev acc avg", - round(dev_acc_context, 3), - ) - - # STEP 7: measure the performance of our trained pipe on an independent dev set - if len(dev_data) and measure_performance: - print() - print("STEP 7: performance measurement of Entity Linking pipe", now()) - print() - - counts, acc_r, acc_r_d, acc_p, acc_p_d, acc_o, acc_o_d = _measure_baselines( - dev_data, kb_2 - ) - print("dev counts:", sorted(counts.items(), key=lambda x: x[0])) - - oracle_by_label = [(x, round(y, 3)) for x, y in acc_o_d.items()] - print("dev acc oracle:", round(acc_o, 3), oracle_by_label) - - random_by_label = [(x, round(y, 3)) for x, y in acc_r_d.items()] - print("dev acc random:", round(acc_r, 3), random_by_label) - - prior_by_label = [(x, round(y, 3)) for x, y in acc_p_d.items()] - print("dev acc prior:", round(acc_p, 3), prior_by_label) - - # using only context - el_pipe.cfg["context_weight"] = 1 - el_pipe.cfg["prior_weight"] = 0 - dev_acc_context, dev_acc_cont_d = _measure_acc(dev_data, el_pipe) - context_by_label = [(x, round(y, 3)) for x, y in dev_acc_cont_d.items()] - print("dev acc context avg:", round(dev_acc_context, 3), context_by_label) - - # measuring combined accuracy (prior + context) - el_pipe.cfg["context_weight"] = 1 - el_pipe.cfg["prior_weight"] = 1 - dev_acc_combo, dev_acc_combo_d = _measure_acc(dev_data, el_pipe) - combo_by_label = [(x, round(y, 3)) for x, y in dev_acc_combo_d.items()] - print("dev acc combo avg:", round(dev_acc_combo, 3), combo_by_label) - - # STEP 8: apply the EL pipe on a toy example - if to_test_pipeline: - print() - print("STEP 8: applying Entity Linking to toy example", now()) - print() - run_el_toy_example(nlp=nlp_2) - - # STEP 9: write the NLP pipeline (including entity linker) to file - if to_write_nlp: - print() - print("STEP 9: testing NLP IO", now()) - print() - print("writing to", NLP_2_DIR) - nlp_2.to_disk(NLP_2_DIR) - print() - - # verify that the IO has gone correctly - if to_read_nlp: - print("reading from", NLP_2_DIR) - nlp_3 = spacy.load(NLP_2_DIR) - - print("running toy example with NLP 3") - run_el_toy_example(nlp=nlp_3) - - # testing performance with an NLP model from file - if test_from_file: - nlp_2 = spacy.load(NLP_1_DIR) - nlp_3 = spacy.load(NLP_2_DIR) - el_pipe = nlp_3.get_pipe("entity_linker") - - dev_limit = 5000 - dev_data = training_set_creator.read_training( - nlp=nlp_2, training_dir=TRAINING_DIR, dev=True, limit=dev_limit, kb=None - ) - - print("Dev testing from file on", len(dev_data), "articles") - print() - - dev_acc_combo, dev_acc_combo_dict = _measure_acc(dev_data, el_pipe) - combo_by_label = [(x, round(y, 3)) for x, y in dev_acc_combo_dict.items()] - print("dev acc combo avg:", round(dev_acc_combo, 3), combo_by_label) - - print() - print("STOP", now()) - - -def _measure_acc(data, el_pipe=None, error_analysis=False): - # If the docs in the data require further processing with an entity linker, set el_pipe - correct_by_label = dict() - incorrect_by_label = dict() - - docs = [d for d, g in data if len(d) > 0] - if el_pipe is not None: - docs = list(el_pipe.pipe(docs)) - golds = [g for d, g in data if len(d) > 0] - - for doc, gold in zip(docs, golds): - try: - correct_entries_per_article = dict() - for entity, kb_dict in gold.links.items(): - start, end = entity - # only evaluating on positive examples - for gold_kb, value in kb_dict.items(): - if value: - offset = _offset(start, end) - correct_entries_per_article[offset] = gold_kb - - for ent in doc.ents: - ent_label = ent.label_ - pred_entity = ent.kb_id_ - start = ent.start_char - end = ent.end_char - offset = _offset(start, end) - gold_entity = correct_entries_per_article.get(offset, None) - # the gold annotations are not complete so we can't evaluate missing annotations as 'wrong' - if gold_entity is not None: - if gold_entity == pred_entity: - correct = correct_by_label.get(ent_label, 0) - correct_by_label[ent_label] = correct + 1 - else: - incorrect = incorrect_by_label.get(ent_label, 0) - incorrect_by_label[ent_label] = incorrect + 1 - if error_analysis: - print(ent.text, "in", doc) - print( - "Predicted", - pred_entity, - "should have been", - gold_entity, - ) - print() - - except Exception as e: - print("Error assessing accuracy", e) - - acc, acc_by_label = calculate_acc(correct_by_label, incorrect_by_label) - return acc, acc_by_label - - -def _measure_baselines(data, kb): - # Measure 3 performance baselines: random selection, prior probabilities, and 'oracle' prediction for upper bound - counts_d = dict() - - random_correct_d = dict() - random_incorrect_d = dict() - - oracle_correct_d = dict() - oracle_incorrect_d = dict() - - prior_correct_d = dict() - prior_incorrect_d = dict() - - docs = [d for d, g in data if len(d) > 0] - golds = [g for d, g in data if len(d) > 0] - - for doc, gold in zip(docs, golds): - try: - correct_entries_per_article = dict() - for entity, kb_dict in gold.links.items(): - start, end = entity - for gold_kb, value in kb_dict.items(): - # only evaluating on positive examples - if value: - offset = _offset(start, end) - correct_entries_per_article[offset] = gold_kb - - for ent in doc.ents: - label = ent.label_ - start = ent.start_char - end = ent.end_char - offset = _offset(start, end) - gold_entity = correct_entries_per_article.get(offset, None) - - # the gold annotations are not complete so we can't evaluate missing annotations as 'wrong' - if gold_entity is not None: - counts_d[label] = counts_d.get(label, 0) + 1 - candidates = kb.get_candidates(ent.text) - oracle_candidate = "" - best_candidate = "" - random_candidate = "" - if candidates: - scores = [] - - for c in candidates: - scores.append(c.prior_prob) - if c.entity_ == gold_entity: - oracle_candidate = c.entity_ - - best_index = scores.index(max(scores)) - best_candidate = candidates[best_index].entity_ - random_candidate = random.choice(candidates).entity_ - - if gold_entity == best_candidate: - prior_correct_d[label] = prior_correct_d.get(label, 0) + 1 - else: - prior_incorrect_d[label] = prior_incorrect_d.get(label, 0) + 1 - - if gold_entity == random_candidate: - random_correct_d[label] = random_correct_d.get(label, 0) + 1 - else: - random_incorrect_d[label] = random_incorrect_d.get(label, 0) + 1 - - if gold_entity == oracle_candidate: - oracle_correct_d[label] = oracle_correct_d.get(label, 0) + 1 - else: - oracle_incorrect_d[label] = oracle_incorrect_d.get(label, 0) + 1 - - except Exception as e: - print("Error assessing accuracy", e) - - acc_prior, acc_prior_d = calculate_acc(prior_correct_d, prior_incorrect_d) - acc_rand, acc_rand_d = calculate_acc(random_correct_d, random_incorrect_d) - acc_oracle, acc_oracle_d = calculate_acc(oracle_correct_d, oracle_incorrect_d) - - return ( - counts_d, - acc_rand, - acc_rand_d, - acc_prior, - acc_prior_d, - acc_oracle, - acc_oracle_d, - ) - - -def _offset(start, end): - return "{}_{}".format(start, end) - - -def calculate_acc(correct_by_label, incorrect_by_label): - acc_by_label = dict() - total_correct = 0 - total_incorrect = 0 - all_keys = set() - all_keys.update(correct_by_label.keys()) - all_keys.update(incorrect_by_label.keys()) - for label in sorted(all_keys): - correct = correct_by_label.get(label, 0) - incorrect = incorrect_by_label.get(label, 0) - total_correct += correct - total_incorrect += incorrect - if correct == incorrect == 0: - acc_by_label[label] = 0 - else: - acc_by_label[label] = correct / (correct + incorrect) - acc = 0 - if not (total_correct == total_incorrect == 0): - acc = total_correct / (total_correct + total_incorrect) - return acc, acc_by_label - - -def check_kb(kb): - for mention in ("Bush", "Douglas Adams", "Homer", "Brazil", "China"): - candidates = kb.get_candidates(mention) - - print("generating candidates for " + mention + " :") - for c in candidates: - print( - " ", - c.prior_prob, - c.alias_, - "-->", - c.entity_ + " (freq=" + str(c.entity_freq) + ")", - ) - print() - - -def run_el_toy_example(nlp): - text = ( - "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " - "Douglas reminds us to always bring our towel, even in China or Brazil. " - "The main character in Doug's novel is the man Arthur Dent, " - "but Dougledydoug doesn't write about George Washington or Homer Simpson." - ) - doc = nlp(text) - print(text) - for ent in doc.ents: - print(" ent", ent.text, ent.label_, ent.kb_id_) - print() - - -if __name__ == "__main__": - run_pipeline() diff --git a/examples/training/pretrain_kb.py b/examples/training/pretrain_kb.py new file mode 100644 index 000000000..67cc1587d --- /dev/null +++ b/examples/training/pretrain_kb.py @@ -0,0 +1,139 @@ +#!/usr/bin/env python +# coding: utf8 + +"""Example of defining and (pre)training spaCy's knowledge base, +which is needed to implement entity linking functionality. + +For more details, see the documentation: +* Knowledge base: https://spacy.io/api/kb +* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking + +Compatible with: spaCy vX.X +Last tested with: vX.X +""" +from __future__ import unicode_literals, print_function + +import plac +from pathlib import Path + +from spacy.vocab import Vocab + +import spacy +from spacy.kb import KnowledgeBase + +from bin.wiki_entity_linking.train_descriptions import EntityEncoder +from spacy import Errors + + +# Q2146908 (Russ Cochran): American golfer +# Q7381115 (Russ Cochran): publisher +ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)} + +INPUT_DIM = 300 # dimension of pre-trained input vectors +DESC_WIDTH = 64 # dimension of output entity vectors + + +@plac.annotations( + vocab_path=("Path to the vocab for the kb", "option", "v", Path), + model=("Model name, should have pretrained word embeddings", "option", "m", str), + output_dir=("Optional output directory", "option", "o", Path), + n_iter=("Number of training iterations", "option", "n", int), +) +def main(vocab_path=None, model=None, output_dir=None, n_iter=50): + """Load the model, create the KB and pretrain the entity encodings. + Either an nlp model or a vocab is needed to provide access to pre-trained word embeddings. + If an output_dir is provided, the KB will be stored there in a file 'kb'. + When providing an nlp model, the updated vocab will also be written to a directory in the output_dir.""" + if model is None and vocab_path is None: + raise ValueError(Errors.E154) + + if model is not None: + nlp = spacy.load(model) # load existing spaCy model + print("Loaded model '%s'" % model) + else: + vocab = Vocab().from_disk(vocab_path) + # create blank Language class with specified vocab + nlp = spacy.blank("en", vocab=vocab) + print("Created blank 'en' model with vocab from '%s'" % vocab_path) + + kb = KnowledgeBase(vocab=nlp.vocab) + + # set up the data + entity_ids = [] + descriptions = [] + freqs = [] + for key, value in ENTITIES.items(): + desc, freq = value + entity_ids.append(key) + descriptions.append(desc) + freqs.append(freq) + + # training entity description encodings + # this part can easily be replaced with a custom entity encoder + encoder = EntityEncoder( + nlp=nlp, + input_dim=INPUT_DIM, + desc_width=DESC_WIDTH, + epochs=n_iter, + threshold=0.001, + ) + encoder.train(description_list=descriptions, to_print=True) + + # get the pretrained entity vectors + embeddings = encoder.apply_encoder(descriptions) + + # set the entities, can also be done by calling `kb.add_entity` for each entity + kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=embeddings) + + # adding aliases, the entities need to be defined in the KB beforehand + kb.add_alias( + alias="Russ Cochran", + entities=["Q2146908", "Q7381115"], + probabilities=[0.24, 0.7], # the sum of these probabilities should not exceed 1 + ) + + # test the trained model + print() + _print_kb(kb) + + # save model to output directory + if output_dir is not None: + output_dir = Path(output_dir) + if not output_dir.exists(): + output_dir.mkdir() + kb_path = str(output_dir / "kb") + kb.dump(kb_path) + print() + print("Saved KB to", kb_path) + + # only storing the vocab if we weren't already reading it from file + if not vocab_path: + vocab_path = output_dir / "vocab" + kb.vocab.to_disk(vocab_path) + print("Saved vocab to", vocab_path) + + print() + + # test the saved model + # always reload a knowledge base with the same vocab instance! + print("Loading vocab from", vocab_path) + print("Loading KB from", kb_path) + vocab2 = Vocab().from_disk(vocab_path) + kb2 = KnowledgeBase(vocab=vocab2) + kb2.load_bulk(kb_path) + _print_kb(kb2) + print() + + +def _print_kb(kb): + print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings()) + print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings()) + + +if __name__ == "__main__": + plac.call(main) + + # Expected output: + + # 2 kb entities: ['Q2146908', 'Q7381115'] + # 1 kb aliases: ['Russ Cochran'] diff --git a/examples/training/train_entity_linker.py b/examples/training/train_entity_linker.py new file mode 100644 index 000000000..f925672f1 --- /dev/null +++ b/examples/training/train_entity_linker.py @@ -0,0 +1,173 @@ +#!/usr/bin/env python +# coding: utf8 + +"""Example of training spaCy's entity linker, starting off with an +existing model and a pre-defined knowledge base. + +For more details, see the documentation: +* Training: https://spacy.io/usage/training +* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking + +Compatible with: spaCy vX.X +Last tested with: vX.X +""" +from __future__ import unicode_literals, print_function + +import plac +import random +from pathlib import Path + +from spacy.symbols import PERSON +from spacy.vocab import Vocab + +import spacy +from spacy.kb import KnowledgeBase + +from spacy import Errors +from spacy.tokens import Span +from spacy.util import minibatch, compounding + + +def sample_train_data(): + train_data = [] + + # Q2146908 (Russ Cochran): American golfer + # Q7381115 (Russ Cochran): publisher + + text_1 = "Russ Cochran his reprints include EC Comics." + dict_1 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}} + train_data.append((text_1, {"links": dict_1})) + + text_2 = "Russ Cochran has been publishing comic art." + dict_2 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}} + train_data.append((text_2, {"links": dict_2})) + + text_3 = "Russ Cochran captured his first major title with his son as caddie." + dict_3 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}} + train_data.append((text_3, {"links": dict_3})) + + text_4 = "Russ Cochran was a member of University of Kentucky's golf team." + dict_4 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}} + train_data.append((text_4, {"links": dict_4})) + + return train_data + + +# training data +TRAIN_DATA = sample_train_data() + + +@plac.annotations( + kb_path=("Path to the knowledge base", "positional", None, Path), + vocab_path=("Path to the vocab for the kb", "positional", None, Path), + output_dir=("Optional output directory", "option", "o", Path), + n_iter=("Number of training iterations", "option", "n", int), +) +def main(kb_path, vocab_path=None, output_dir=None, n_iter=50): + """Create a blank model with the specified vocab, set up the pipeline and train the entity linker. + The `vocab` should be the one used during creation of the KB.""" + vocab = Vocab().from_disk(vocab_path) + # create blank Language class with correct vocab + nlp = spacy.blank("en", vocab=vocab) + nlp.vocab.vectors.name = "spacy_pretrained_vectors" + print("Created blank 'en' model with vocab from '%s'" % vocab_path) + + # create the built-in pipeline components and add them to the pipeline + # nlp.create_pipe works for built-ins that are registered with spaCy + if "entity_linker" not in nlp.pipe_names: + entity_linker = nlp.create_pipe("entity_linker") + kb = KnowledgeBase(vocab=nlp.vocab) + kb.load_bulk(kb_path) + print("Loaded Knowledge Base from '%s'" % kb_path) + entity_linker.set_kb(kb) + nlp.add_pipe(entity_linker, last=True) + else: + entity_linker = nlp.get_pipe("entity_linker") + kb = entity_linker.kb + + # make sure the annotated examples correspond to known identifiers in the knowlege base + kb_ids = kb.get_entity_strings() + for text, annotation in TRAIN_DATA: + for offset, kb_id_dict in annotation["links"].items(): + new_dict = {} + for kb_id, value in kb_id_dict.items(): + if kb_id in kb_ids: + new_dict[kb_id] = value + else: + print( + "Removed", kb_id, "from training because it is not in the KB." + ) + annotation["links"][offset] = new_dict + + # get names of other pipes to disable them during training + other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"] + with nlp.disable_pipes(*other_pipes): # only train entity linker + # reset and initialize the weights randomly + optimizer = nlp.begin_training() + for itn in range(n_iter): + random.shuffle(TRAIN_DATA) + losses = {} + # batch up the examples using spaCy's minibatch + batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) + for batch in batches: + texts, annotations = zip(*batch) + nlp.update( + texts, # batch of texts + annotations, # batch of annotations + drop=0.2, # dropout - make it harder to memorise data + losses=losses, + sgd=optimizer, + ) + print(itn, "Losses", losses) + + # test the trained model + _apply_model(nlp) + + # save model to output directory + if output_dir is not None: + output_dir = Path(output_dir) + if not output_dir.exists(): + output_dir.mkdir() + nlp.to_disk(output_dir) + print() + print("Saved model to", output_dir) + + # test the saved model + print("Loading from", output_dir) + nlp2 = spacy.load(output_dir) + _apply_model(nlp2) + + +def _apply_model(nlp): + for text, annotation in TRAIN_DATA: + doc = nlp.tokenizer(text) + + # set entities so the evaluation is independent of the NER step + # all the examples contain 'Russ Cochran' as the first two tokens in the sentence + rc_ent = Span(doc, 0, 2, label=PERSON) + doc.ents = [rc_ent] + + # apply the entity linker which will now make predictions for the 'Russ Cochran' entities + doc = nlp.get_pipe("entity_linker")(doc) + + print() + print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents]) + print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc]) + + +if __name__ == "__main__": + plac.call(main) + + # Expected output (can be shuffled): + + # Entities[('Russ Cochran', 'PERSON', 'Q7381115')] + # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ("his", '', ''), ('reprints', '', ''), ('include', '', ''), ('The', '', ''), ('Complete', '', ''), ('EC', '', ''), ('Library', '', ''), ('.', '', '')] + + # Entities[('Russ Cochran', 'PERSON', 'Q7381115')] + # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ('has', '', ''), ('been', '', ''), ('publishing', '', ''), ('comic', '', ''), ('art', '', ''), ('.', '', '')] + + # Entities[('Russ Cochran', 'PERSON', 'Q2146908')] + # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('captured', '', ''), ('his', '', ''), ('first', '', ''), ('major', '', ''), ('title', '', ''), ('with', '', ''), ('his', '', ''), ('son', '', ''), ('as', '', ''), ('caddie', '', ''), ('.', '', '')] + + # Entities[('Russ Cochran', 'PERSON', 'Q2146908')] + # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('was', '', ''), ('a', '', ''), ('member', '', ''), ('of', '', ''), ('University', '', ''), ('of', '', ''), ('Kentucky', '', ''), ("'s", '', ''), ('golf', '', ''), ('team', '', ''), ('.', '', '')] diff --git a/spacy/_ml.py b/spacy/_ml.py index dedd1bee5..1e8c0f27b 100644 --- a/spacy/_ml.py +++ b/spacy/_ml.py @@ -665,25 +665,15 @@ def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg): if "entity_width" not in cfg: raise ValueError(Errors.E144.format(param="entity_width")) - if "context_width" not in cfg: - raise ValueError(Errors.E144.format(param="context_width")) conv_depth = cfg.get("conv_depth", 2) cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3) pretrained_vectors = cfg.get("pretrained_vectors", None) - context_width = cfg.get("context_width") - entity_width = cfg.get("entity_width") + context_width = cfg.get("entity_width") with Model.define_operators({">>": chain, "**": clone}): - model = ( - Affine(entity_width, entity_width + context_width + 1 + ner_types) - >> Affine(1, entity_width, drop_factor=0.0) - >> logistic - ) - # context encoder - tok2vec = ( - Tok2Vec( + tok2vec = Tok2Vec( width=hidden_width, embed_size=embed_width, pretrained_vectors=pretrained_vectors, @@ -692,17 +682,17 @@ def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg): conv_depth=conv_depth, bilstm_depth=0, ) + + model = ( + tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> Residual(zero_init(Maxout(hidden_width, hidden_width))) - >> zero_init(Affine(context_width, hidden_width)) + >> zero_init(Affine(context_width, hidden_width, drop_factor=0.0)) ) model.tok2vec = tok2vec - - model.tok2vec = tok2vec - model.tok2vec.nO = context_width - model.nO = 1 + model.nO = context_width return model diff --git a/spacy/errors.py b/spacy/errors.py index 79b9cbdf4..25a170bdb 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -124,7 +124,8 @@ class Errors(object): E016 = ("MultitaskObjective target should be function or one of: dep, " "tag, ent, dep_tag_offset, ent_tag.") E017 = ("Can only add unicode or bytes. Got type: {value_type}") - E018 = ("Can't retrieve string for hash '{hash_value}'.") + E018 = ("Can't retrieve string for hash '{hash_value}'. This usually refers " + "to an issue with the `Vocab` or `StringStore`.") E019 = ("Can't create transition with unknown action ID: {action}. Action " "IDs are enumerated in spacy/syntax/{src}.pyx.") E020 = ("Could not find a gold-standard action to supervise the " @@ -420,7 +421,12 @@ class Errors(object): E151 = ("Trying to call nlp.update without required annotation types. " "Expected top-level keys: {expected_keys}." " Got: {unexpected_keys}.") - + E152 = ("The `nlp` object should have a pre-trained `ner` component.") + E153 = ("Either provide a path to a preprocessed training directory, " + "or to the original Wikipedia XML dump.") + E154 = ("Either the `nlp` model or the `vocab` should be specified.") + E155 = ("The `nlp` object should have access to pre-trained word vectors, cf. " + "https://spacy.io/usage/models#languages.") @add_codes class TempErrors(object): diff --git a/spacy/kb.pyx b/spacy/kb.pyx index 28e762653..176ac17de 100644 --- a/spacy/kb.pyx +++ b/spacy/kb.pyx @@ -19,6 +19,13 @@ from libcpp.vector cimport vector cdef class Candidate: + """A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved + to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking + algorithm which will disambiguate the various candidates to the correct one. + Each candidate (alias, entity) pair is assigned to a certain prior probability. + + DOCS: https://spacy.io/api/candidate + """ def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob): self.kb = kb @@ -62,8 +69,13 @@ cdef class Candidate: cdef class KnowledgeBase: + """A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases, + to support entity linking of named entities to real-world concepts. - def __init__(self, Vocab vocab, entity_vector_length): + DOCS: https://spacy.io/api/kb + """ + + def __init__(self, Vocab vocab, entity_vector_length=64): self.vocab = vocab self.mem = Pool() self.entity_vector_length = entity_vector_length diff --git a/spacy/pipeline/pipes.pyx b/spacy/pipeline/pipes.pyx index 375a0884b..db45e0faa 100644 --- a/spacy/pipeline/pipes.pyx +++ b/spacy/pipeline/pipes.pyx @@ -14,6 +14,8 @@ from thinc.neural.util import to_categorical from thinc.neural.util import get_array_module from spacy.kb import KnowledgeBase + +from spacy.cli.pretrain import get_cossim_loss from .functions import merge_subtokens from ..tokens.doc cimport Doc from ..syntax.nn_parser cimport Parser @@ -1102,7 +1104,7 @@ cdef class EntityRecognizer(Parser): class EntityLinker(Pipe): """Pipeline component for named entity linking. - DOCS: TODO + DOCS: https://spacy.io/api/entitylinker """ name = 'entity_linker' NIL = "NIL" # string used to refer to a non-existing link @@ -1121,9 +1123,6 @@ class EntityLinker(Pipe): self.model = True self.kb = None self.cfg = dict(cfg) - self.sgd_context = None - if not self.cfg.get("context_width"): - self.cfg["context_width"] = 128 def set_kb(self, kb): self.kb = kb @@ -1144,7 +1143,6 @@ class EntityLinker(Pipe): if self.model is True: self.model = self.Model(**self.cfg) - self.sgd_context = self.create_optimizer() if sgd is None: sgd = self.create_optimizer() @@ -1170,12 +1168,6 @@ class EntityLinker(Pipe): golds = [golds] context_docs = [] - entity_encodings = [] - - priors = [] - type_vectors = [] - - type_to_int = self.cfg.get("type_to_int", dict()) for doc, gold in zip(docs, golds): ents_by_offset = dict() @@ -1184,49 +1176,38 @@ class EntityLinker(Pipe): for entity, kb_dict in gold.links.items(): start, end = entity mention = doc.text[start:end] + for kb_id, value in kb_dict.items(): - entity_encoding = self.kb.get_vector(kb_id) - prior_prob = self.kb.get_prior_prob(kb_id, mention) + # Currently only training on the positive instances + if value: + context_docs.append(doc) - gold_ent = ents_by_offset["{}_{}".format(start, end)] - if gold_ent is None: - raise RuntimeError(Errors.E147.format(method="update", msg="gold entity not found")) + context_encodings, bp_context = self.model.begin_update(context_docs, drop=drop) + loss, d_scores = self.get_similarity_loss(scores=context_encodings, golds=golds, docs=None) + bp_context(d_scores, sgd=sgd) - type_vector = [0 for i in range(len(type_to_int))] - if len(type_to_int) > 0: - type_vector[type_to_int[gold_ent.label_]] = 1 + if losses is not None: + losses[self.name] += loss + return loss - # store data - entity_encodings.append(entity_encoding) - context_docs.append(doc) - type_vectors.append(type_vector) + def get_similarity_loss(self, docs, golds, scores): + entity_encodings = [] + for gold in golds: + for entity, kb_dict in gold.links.items(): + for kb_id, value in kb_dict.items(): + # this loss function assumes we're only using positive examples + if value: + entity_encoding = self.kb.get_vector(kb_id) + entity_encodings.append(entity_encoding) - if self.cfg.get("prior_weight", 1) > 0: - priors.append([prior_prob]) - else: - priors.append([0]) + entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32") - if len(entity_encodings) > 0: - if not (len(priors) == len(entity_encodings) == len(context_docs) == len(type_vectors)): - raise RuntimeError(Errors.E147.format(method="update", msg="vector lengths not equal")) + if scores.shape != entity_encodings.shape: + raise RuntimeError(Errors.E147.format(method="get_loss", msg="gold entities do not match up")) - entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32") - - context_encodings, bp_context = self.model.tok2vec.begin_update(context_docs, drop=drop) - mention_encodings = [list(context_encodings[i]) + list(entity_encodings[i]) + priors[i] + type_vectors[i] - for i in range(len(entity_encodings))] - pred, bp_mention = self.model.begin_update(self.model.ops.asarray(mention_encodings, dtype="float32"), drop=drop) - - loss, d_scores = self.get_loss(scores=pred, golds=golds, docs=docs) - mention_gradient = bp_mention(d_scores, sgd=sgd) - - context_gradients = [list(x[0:self.cfg.get("context_width")]) for x in mention_gradient] - bp_context(self.model.ops.asarray(context_gradients, dtype="float32"), sgd=self.sgd_context) - - if losses is not None: - losses[self.name] += loss - return loss - return 0 + loss, gradients = get_cossim_loss(yh=scores, y=entity_encodings) + loss = loss / len(entity_encodings) + return loss, gradients def get_loss(self, docs, golds, scores): cats = [] @@ -1271,20 +1252,17 @@ class EntityLinker(Pipe): if isinstance(docs, Doc): docs = [docs] - context_encodings = self.model.tok2vec(docs) + context_encodings = self.model(docs) xp = get_array_module(context_encodings) - type_to_int = self.cfg.get("type_to_int", dict()) - for i, doc in enumerate(docs): if len(doc) > 0: # currently, the context is the same for each entity in a sentence (should be refined) context_encoding = context_encodings[i] + context_enc_t = context_encoding.T + norm_1 = xp.linalg.norm(context_enc_t) for ent in doc.ents: entity_count += 1 - type_vector = [0 for i in range(len(type_to_int))] - if len(type_to_int) > 0: - type_vector[type_to_int[ent.label_]] = 1 candidates = self.kb.get_candidates(ent.text) if not candidates: @@ -1293,20 +1271,23 @@ class EntityLinker(Pipe): else: random.shuffle(candidates) - # this will set the prior probabilities to 0 (just like in training) if their weight is 0 - prior_probs = xp.asarray([[c.prior_prob] for c in candidates]) - prior_probs *= self.cfg.get("prior_weight", 1) + # this will set all prior probabilities to 0 if they should be excluded from the model + prior_probs = xp.asarray([c.prior_prob for c in candidates]) + if not self.cfg.get("incl_prior", True): + prior_probs = xp.asarray([[0.0] for c in candidates]) scores = prior_probs - if self.cfg.get("context_weight", 1) > 0: + # add in similarity from the context + if self.cfg.get("incl_context", True): entity_encodings = xp.asarray([c.entity_vector for c in candidates]) + norm_2 = xp.linalg.norm(entity_encodings, axis=1) + if len(entity_encodings) != len(prior_probs): raise RuntimeError(Errors.E147.format(method="predict", msg="vectors not of equal length")) - mention_encodings = [list(context_encoding) + list(entity_encodings[i]) - + list(prior_probs[i]) + type_vector - for i in range(len(entity_encodings))] - scores = self.model(self.model.ops.asarray(mention_encodings, dtype="float32")) + # cosine similarity + sims = xp.dot(entity_encodings, context_enc_t) / (norm_1 * norm_2) + scores = prior_probs + sims - (prior_probs*sims) # TODO: thresholding best_index = scores.argmax() @@ -1346,7 +1327,7 @@ class EntityLinker(Pipe): def load_model(p): if self.model is True: self.model = self.Model(**self.cfg) - try: + try: self.model.from_bytes(p.open("rb").read()) except AttributeError: raise ValueError(Errors.E149) diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index ca6bf2b6c..b10d55267 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -23,9 +23,9 @@ def test_kb_valid_entities(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3) # adding entities - mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[8, 4, 3]) - mykb.add_entity(entity="Q2", freq=0.5, entity_vector=[2, 1, 0]) - mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[-1, -6, 5]) + mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3]) + mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0]) + mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2]) @@ -52,9 +52,9 @@ def test_kb_invalid_entities(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities - mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1]) - mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2]) - mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3]) + mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) + mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) + mykb.add_entity(entity="Q3", freq=25, entity_vector=[3]) # adding aliases - should fail because one of the given IDs is not valid with pytest.raises(ValueError): @@ -68,9 +68,9 @@ def test_kb_invalid_probabilities(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities - mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1]) - mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2]) - mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3]) + mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) + mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) + mykb.add_entity(entity="Q3", freq=25, entity_vector=[3]) # adding aliases - should fail because the sum of the probabilities exceeds 1 with pytest.raises(ValueError): @@ -82,9 +82,9 @@ def test_kb_invalid_combination(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities - mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1]) - mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2]) - mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3]) + mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) + mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) + mykb.add_entity(entity="Q3", freq=25, entity_vector=[3]) # adding aliases - should fail because the entities and probabilities vectors are not of equal length with pytest.raises(ValueError): @@ -98,11 +98,11 @@ def test_kb_invalid_entity_vector(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3) # adding entities - mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1, 2, 3]) + mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3]) # this should fail because the kb's expected entity vector length is 3 with pytest.raises(ValueError): - mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2]) + mykb.add_entity(entity="Q2", freq=5, entity_vector=[2]) def test_candidate_generation(nlp): @@ -110,9 +110,9 @@ def test_candidate_generation(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities - mykb.add_entity(entity="Q1", freq=0.7, entity_vector=[1]) - mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2]) - mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3]) + mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) + mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) + mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]) @@ -126,7 +126,7 @@ def test_candidate_generation(nlp): # test the content of the candidates assert mykb.get_candidates("adam")[0].entity_ == "Q2" assert mykb.get_candidates("adam")[0].alias_ == "adam" - assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 0.2) + assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12) assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9) @@ -135,8 +135,8 @@ def test_preserving_links_asdoc(nlp): mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) # adding entities - mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1]) - mykb.add_entity(entity="Q2", freq=0.8, entity_vector=[1]) + mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) + mykb.add_entity(entity="Q2", freq=8, entity_vector=[1]) # adding aliases mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7]) @@ -154,11 +154,11 @@ def test_preserving_links_asdoc(nlp): ruler.add_patterns(patterns) nlp.add_pipe(ruler) - el_pipe = nlp.create_pipe(name="entity_linker", config={"context_width": 64}) + el_pipe = nlp.create_pipe(name="entity_linker") el_pipe.set_kb(mykb) el_pipe.begin_training() - el_pipe.context_weight = 0 - el_pipe.prior_weight = 1 + el_pipe.incl_context = False + el_pipe.incl_prior = True nlp.add_pipe(el_pipe, last=True) # test whether the entity links are preserved by the `as_doc()` function diff --git a/spacy/tests/serialize/test_serialize_kb.py b/spacy/tests/serialize/test_serialize_kb.py index 1752abda2..e817e8e12 100644 --- a/spacy/tests/serialize/test_serialize_kb.py +++ b/spacy/tests/serialize/test_serialize_kb.py @@ -30,10 +30,10 @@ def test_serialize_kb_disk(en_vocab): def _get_dummy_kb(vocab): kb = KnowledgeBase(vocab=vocab, entity_vector_length=3) - kb.add_entity(entity='Q53', freq=0.33, entity_vector=[0, 5, 3]) - kb.add_entity(entity='Q17', freq=0.2, entity_vector=[7, 1, 0]) - kb.add_entity(entity='Q007', freq=0.7, entity_vector=[0, 0, 7]) - kb.add_entity(entity='Q44', freq=0.4, entity_vector=[4, 4, 4]) + kb.add_entity(entity='Q53', freq=33, entity_vector=[0, 5, 3]) + kb.add_entity(entity='Q17', freq=2, entity_vector=[7, 1, 0]) + kb.add_entity(entity='Q007', freq=7, entity_vector=[0, 0, 7]) + kb.add_entity(entity='Q44', freq=342, entity_vector=[4, 4, 4]) kb.add_alias(alias='double07', entities=['Q17', 'Q007'], probabilities=[0.1, 0.9]) kb.add_alias(alias='guy', entities=['Q53', 'Q007', 'Q17', 'Q44'], probabilities=[0.3, 0.3, 0.2, 0.1]) @@ -62,13 +62,13 @@ def _check_kb(kb): assert len(candidates) == 2 assert candidates[0].entity_ == 'Q007' - assert 0.6999 < candidates[0].entity_freq < 0.701 + assert 6.999 < candidates[0].entity_freq < 7.01 assert candidates[0].entity_vector == [0, 0, 7] assert candidates[0].alias_ == 'double07' assert 0.899 < candidates[0].prior_prob < 0.901 assert candidates[1].entity_ == 'Q17' - assert 0.199 < candidates[1].entity_freq < 0.201 + assert 1.99 < candidates[1].entity_freq < 2.01 assert candidates[1].entity_vector == [7, 1, 0] assert candidates[1].alias_ == 'double07' assert 0.099 < candidates[1].prior_prob < 0.101 diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index e9c5a0f1d..21f29f304 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -546,6 +546,7 @@ cdef class Doc: cdef int i for i in range(self.length): self.c[i].ent_type = 0 + self.c[i].ent_kb_id = 0 self.c[i].ent_iob = 0 # Means missing. cdef attr_t ent_type cdef int start, end