Merge branch 'develop' into spacy.io

This commit is contained in:
Ines Montani 2019-03-06 14:41:25 +01:00
commit 0c09831227
2 changed files with 16 additions and 22 deletions

View File

@ -4,6 +4,7 @@ from __future__ import unicode_literals, print_function
import re
from collections import namedtuple
from .stop_words import STOP_WORDS
from .tag_map import TAG_MAP
from ...attrs import LANG
from ...language import Language
@ -38,24 +39,20 @@ def resolve_pos(token):
in the sentence. This function adds information to the POS tag to
resolve ambiguous mappings.
"""
# TODO: This is a first take. The rules here are crude approximations.
# For many of these, full dependencies are needed to properly resolve
# PoS mappings.
if token.pos == "連体詞,*,*,*":
if re.match(r"[こそあど此其彼]の", token.surface):
return token.pos + ",DET"
if re.match(r"[こそあど此其彼]", token.surface):
return token.pos + ",PRON"
return token.pos + ",ADJ"
return token.pos
def detailed_tokens(tokenizer, text):
"""Format Mecab output into a nice data structure, based on Janome."""
node = tokenizer.parseToNode(text)
node = node.next # first node is beginning of sentence and empty, skip it
words = []
@ -64,12 +61,10 @@ def detailed_tokens(tokenizer, text):
base = surface # a default value. Updated if available later.
parts = node.feature.split(",")
pos = ",".join(parts[0:4])
if len(parts) > 7:
# this information is only available for words in the tokenizer
# dictionary
base = parts[7]
words.append(ShortUnitWord(surface, base, pos))
node = node.next
return words
@ -78,29 +73,25 @@ def detailed_tokens(tokenizer, text):
class JapaneseTokenizer(DummyTokenizer):
def __init__(self, cls, nlp=None):
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
self.tokenizer = try_mecab_import().Tagger()
self.tokenizer.parseToNode("") # see #2901
def __call__(self, text):
dtokens = detailed_tokens(self.tokenizer, text)
words = [x.surface for x in dtokens]
spaces = [False] * len(words)
doc = Doc(self.vocab, words=words, spaces=spaces)
for token, dtoken in zip(doc, dtokens):
token._.mecab_tag = dtoken.pos
token.tag_ = resolve_pos(dtoken)
token.lemma_ = dtoken.lemma
return doc
class JapaneseDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda _text: "ja"
stop_words = STOP_WORDS
tag_map = TAG_MAP
@classmethod

View File

@ -208,21 +208,24 @@ $ python -m spacy train [lang] [output_path] [train_path] [dev_path]
### Environment variables for hyperparameters {#train-hyperparams new="2"}
spaCy lets you set hyperparameters for training via environment variables. This
is useful, because it keeps the command simple and allows you to
[create an alias](https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias/17537#17537)
for your custom `train` command while still being able to easily tweak the
hyperparameters. For example:
spaCy lets you set hyperparameters for training via environment variables. For
example:
```bash
$ parser_hidden_depth=2 parser_maxout_pieces=1 spacy train [...]
$ token_vector_width=256 learn_rate=0.0001 spacy train [...]
```
```bash
### Usage with alias
alias train-parser="spacy train en /output /data /train /dev -n 1000"
parser_maxout_pieces=1 train-parser
```
> #### Usage with alias
>
> Environment variables keep the command simple and allow you to to
> [create an alias](https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias/17537#17537)
> for your custom `train` command while still being able to easily tweak the
> hyperparameters.
>
> ```bash
> alias train-parser="python -m spacy train en /output /data /train /dev -n 1000"
> token_vector_width=256 train-parser
> ```
| Name | Description | Default |
| -------------------- | --------------------------------------------------- | ------- |