mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Merge branch 'develop' into spacy.io
This commit is contained in:
commit
0c09831227
|
@ -4,6 +4,7 @@ from __future__ import unicode_literals, print_function
|
|||
import re
|
||||
from collections import namedtuple
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tag_map import TAG_MAP
|
||||
from ...attrs import LANG
|
||||
from ...language import Language
|
||||
|
@ -38,24 +39,20 @@ def resolve_pos(token):
|
|||
in the sentence. This function adds information to the POS tag to
|
||||
resolve ambiguous mappings.
|
||||
"""
|
||||
|
||||
# TODO: This is a first take. The rules here are crude approximations.
|
||||
# For many of these, full dependencies are needed to properly resolve
|
||||
# PoS mappings.
|
||||
|
||||
if token.pos == "連体詞,*,*,*":
|
||||
if re.match(r"[こそあど此其彼]の", token.surface):
|
||||
return token.pos + ",DET"
|
||||
if re.match(r"[こそあど此其彼]", token.surface):
|
||||
return token.pos + ",PRON"
|
||||
return token.pos + ",ADJ"
|
||||
|
||||
return token.pos
|
||||
|
||||
|
||||
def detailed_tokens(tokenizer, text):
|
||||
"""Format Mecab output into a nice data structure, based on Janome."""
|
||||
|
||||
node = tokenizer.parseToNode(text)
|
||||
node = node.next # first node is beginning of sentence and empty, skip it
|
||||
words = []
|
||||
|
@ -64,12 +61,10 @@ def detailed_tokens(tokenizer, text):
|
|||
base = surface # a default value. Updated if available later.
|
||||
parts = node.feature.split(",")
|
||||
pos = ",".join(parts[0:4])
|
||||
|
||||
if len(parts) > 7:
|
||||
# this information is only available for words in the tokenizer
|
||||
# dictionary
|
||||
base = parts[7]
|
||||
|
||||
words.append(ShortUnitWord(surface, base, pos))
|
||||
node = node.next
|
||||
return words
|
||||
|
@ -78,29 +73,25 @@ def detailed_tokens(tokenizer, text):
|
|||
class JapaneseTokenizer(DummyTokenizer):
|
||||
def __init__(self, cls, nlp=None):
|
||||
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
||||
|
||||
self.tokenizer = try_mecab_import().Tagger()
|
||||
self.tokenizer.parseToNode("") # see #2901
|
||||
|
||||
def __call__(self, text):
|
||||
dtokens = detailed_tokens(self.tokenizer, text)
|
||||
|
||||
words = [x.surface for x in dtokens]
|
||||
spaces = [False] * len(words)
|
||||
doc = Doc(self.vocab, words=words, spaces=spaces)
|
||||
|
||||
for token, dtoken in zip(doc, dtokens):
|
||||
token._.mecab_tag = dtoken.pos
|
||||
token.tag_ = resolve_pos(dtoken)
|
||||
token.lemma_ = dtoken.lemma
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
class JapaneseDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters[LANG] = lambda _text: "ja"
|
||||
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -208,21 +208,24 @@ $ python -m spacy train [lang] [output_path] [train_path] [dev_path]
|
|||
|
||||
### Environment variables for hyperparameters {#train-hyperparams new="2"}
|
||||
|
||||
spaCy lets you set hyperparameters for training via environment variables. This
|
||||
is useful, because it keeps the command simple and allows you to
|
||||
[create an alias](https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias/17537#17537)
|
||||
for your custom `train` command while still being able to easily tweak the
|
||||
hyperparameters. For example:
|
||||
spaCy lets you set hyperparameters for training via environment variables. For
|
||||
example:
|
||||
|
||||
```bash
|
||||
$ parser_hidden_depth=2 parser_maxout_pieces=1 spacy train [...]
|
||||
$ token_vector_width=256 learn_rate=0.0001 spacy train [...]
|
||||
```
|
||||
|
||||
```bash
|
||||
### Usage with alias
|
||||
alias train-parser="spacy train en /output /data /train /dev -n 1000"
|
||||
parser_maxout_pieces=1 train-parser
|
||||
```
|
||||
> #### Usage with alias
|
||||
>
|
||||
> Environment variables keep the command simple and allow you to to
|
||||
> [create an alias](https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias/17537#17537)
|
||||
> for your custom `train` command while still being able to easily tweak the
|
||||
> hyperparameters.
|
||||
>
|
||||
> ```bash
|
||||
> alias train-parser="python -m spacy train en /output /data /train /dev -n 1000"
|
||||
> token_vector_width=256 train-parser
|
||||
> ```
|
||||
|
||||
| Name | Description | Default |
|
||||
| -------------------- | --------------------------------------------------- | ------- |
|
||||
|
|
Loading…
Reference in New Issue
Block a user