Merge branch 'master' into spacy.io

This commit is contained in:
Ines Montani 2021-02-14 14:39:46 +11:00
commit 0c7937c74d
6 changed files with 101 additions and 4 deletions

View File

@ -103,6 +103,10 @@ def fill_config(
# config result is a valid config # config result is a valid config
nlp = util.load_model_from_config(nlp.config) nlp = util.load_model_from_config(nlp.config)
filled = nlp.config filled = nlp.config
# If we have sourced components in the base config, those will have been
# replaced with their actual config after loading, so we have to re-add them
sourced = util.get_sourced_components(config)
filled["components"].update(sourced)
if pretraining: if pretraining:
validate_config_for_pretrain(filled, msg) validate_config_for_pretrain(filled, msg)
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH) pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)

View File

@ -278,7 +278,7 @@ cdef cppclass StateC:
return this._stack.size() return this._stack.size()
int buffer_length() nogil const: int buffer_length() nogil const:
return this.length - this._b_i return (this.length - this._b_i) + this._rebuffer.size()
void push() nogil: void push() nogil:
b0 = this.B(0) b0 = this.B(0)

View File

@ -134,8 +134,6 @@ cdef class TransitionSystem:
def is_valid(self, StateClass stcls, move_name): def is_valid(self, StateClass stcls, move_name):
action = self.lookup_transition(move_name) action = self.lookup_transition(move_name)
if action.move == 0:
return False
return action.is_valid(stcls.c, action.label) return action.is_valid(stcls.c, action.label)
cdef int set_valid(self, int* is_valid, const StateC* st) nogil: cdef int set_valid(self, int* is_valid, const StateC* st) nogil:

View File

@ -0,0 +1,40 @@
from spacy.cli.init_config import fill_config
from spacy.util import load_config
from spacy.lang.en import English
from thinc.api import Config
from ..util import make_tempdir
def test_issue7055():
"""Test that fill-config doesn't turn sourced components into factories."""
source_cfg = {
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]},
"components": {
"tok2vec": {"factory": "tok2vec"},
"tagger": {"factory": "tagger"},
},
}
source_nlp = English.from_config(source_cfg)
with make_tempdir() as dir_path:
# We need to create a loadable source pipeline
source_path = dir_path / "test_model"
source_nlp.to_disk(source_path)
base_cfg = {
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
"components": {
"tok2vec": {"source": str(source_path)},
"tagger": {"source": str(source_path)},
"ner": {"factory": "ner"},
},
}
base_cfg = Config(base_cfg)
base_path = dir_path / "base.cfg"
base_cfg.to_disk(base_path)
output_path = dir_path / "config.cfg"
fill_config(output_path, base_path, silent=True)
filled_cfg = load_config(output_path)
assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path)
assert filled_cfg["components"]["tagger"]["source"] == str(source_path)
assert filled_cfg["components"]["ner"]["factory"] == "ner"
assert "model" in filled_cfg["components"]["ner"]

View File

@ -0,0 +1,27 @@
import pytest
from spacy.tokens.doc import Doc
from spacy.vocab import Vocab
from spacy.pipeline._parser_internals.arc_eager import ArcEager
def test_issue7056():
"""Test that the Unshift transition works properly, and doesn't cause
sentence segmentation errors."""
vocab = Vocab()
ae = ArcEager(
vocab.strings,
ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"])
)
doc = Doc(vocab, words="Severe pain , after trauma".split())
state = ae.init_batch([doc])[0]
ae.apply_transition(state, "S")
ae.apply_transition(state, "L-amod")
ae.apply_transition(state, "S")
ae.apply_transition(state, "S")
ae.apply_transition(state, "S")
ae.apply_transition(state, "R-pobj")
ae.apply_transition(state, "D")
ae.apply_transition(state, "D")
ae.apply_transition(state, "D")
assert not state.eol()

View File

@ -1,6 +1,34 @@
{ {
"resources": [ "resources": [
{ {
"id": "spacy-dbpedia-spotlight",
"title": "DBpedia Spotlight for SpaCy",
"slogan": "Use DBpedia Spotlight to link entities inside SpaCy",
"description": "This library links SpaCy with [DBpedia Spotlight](https://www.dbpedia-spotlight.org/). You can easily get the DBpedia entities from your documents, using the public web service or by using your own instance of DBpedia Spotlight. The `doc.ents` are populated with the entities and all their details (URI, type, ...).",
"github": "MartinoMensio/spacy-dbpedia-spotlight",
"pip": "spacy-dbpedia-spotlight",
"code_example": [
"import spacy_dbpedia_spotlight",
"# load your model as usual",
"nlp = spacy.load('en_core_web_lg')",
"# add the pipeline stage",
"nlp.add_pipe('dbpedia_spotlight')",
"# get the document",
"doc = nlp('The president of USA is calling Boris Johnson to decide what to do about coronavirus')",
"# see the entities",
"print('Entities', [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents])",
"# inspect the raw data from DBpedia spotlight",
"print(doc.ents[0]._.dbpedia_raw_result)"
],
"category": ["models", "pipeline"],
"author": "Martino Mensio",
"author_links": {
"twitter": "MartinoMensio",
"github": "MartinoMensio",
"website": "https://martinomensio.github.io"
}
},
{
"id": "spacy-textblob", "id": "spacy-textblob",
"title": "spaCyTextBlob", "title": "spaCyTextBlob",
"slogan": "Easy sentiment analysis for spaCy using TextBlob", "slogan": "Easy sentiment analysis for spaCy using TextBlob",