mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-20 09:01:58 +03:00
Set curated transformers API version to 3.7
This commit is contained in:
parent
fa809443de
commit
0d2be9e96c
|
@ -3,7 +3,7 @@ title: CuratedTransformer
|
|||
teaser: Pipeline component for multi-task learning with transformer models
|
||||
tag: class
|
||||
source: github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/pipeline_component.py
|
||||
version: 3
|
||||
version: 3.7
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: transformer
|
||||
---
|
||||
|
@ -17,25 +17,33 @@ api_string_name: transformer
|
|||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This component is available via the extension package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers). It
|
||||
exposes the component via entry points, so if you have the package installed,
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
|
||||
It exposes the component via entry points, so if you have the package installed,
|
||||
using `factory = "curated_transformer"` in your
|
||||
[training config](/usage/training#config) or `nlp.add_pipe("curated_transformer")` will
|
||||
work out-of-the-box.
|
||||
[training config](/usage/training#config) or
|
||||
`nlp.add_pipe("curated_transformer")` will work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
This Python package provides a curated set of transformer models for spaCy. It is focused on deep integration into spaCy and will support deployment-focused features such as distillation and quantization in the future. spaCy curated transformers currently supports the following model types:
|
||||
This Python package provides a curated set of transformer models for spaCy. It
|
||||
is focused on deep integration into spaCy and will support deployment-focused
|
||||
features such as distillation and quantization in the future. spaCy curated
|
||||
transformers currently supports the following model types:
|
||||
|
||||
* ALBERT
|
||||
* BERT
|
||||
* CamemBERT
|
||||
* RoBERTa
|
||||
* XLM-RoBERTa
|
||||
- ALBERT
|
||||
- BERT
|
||||
- CamemBERT
|
||||
- RoBERTa
|
||||
- XLM-RoBERTa
|
||||
|
||||
You will usually connect downstream components to a shared curated transformer using one of the curated transformer listener layers. This works similarly to spaCy's [Tok2Vec](/api/tok2vec), and the [Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer.
|
||||
You will usually connect downstream components to a shared curated transformer
|
||||
using one of the curated transformer listener layers. This works similarly to
|
||||
spaCy's [Tok2Vec](/api/tok2vec), and the
|
||||
[Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer.
|
||||
|
||||
Supporting a wide variety of transformer models is a non-goal. If you want to use another type of model, use [spacy-transformers](/api/spacy-transformers), which allows you to use Hugging Face transformers models with spaCy.
|
||||
Supporting a wide variety of transformer models is a non-goal. If you want to
|
||||
use another type of model, use [spacy-transformers](/api/spacy-transformers),
|
||||
which allows you to use Hugging Face transformers models with spaCy.
|
||||
|
||||
The component assigns the output of the transformer to the `Doc`'s extension
|
||||
attributes. We also calculate an alignment between the word-piece tokens and the
|
||||
|
@ -51,8 +59,8 @@ For more details, see the [usage documentation](/usage/embeddings-transformers).
|
|||
The component sets the following
|
||||
[custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
|
||||
|
||||
| Location | Value |
|
||||
| ---------------- | ------------------------------------------------------------------------ |
|
||||
| Location | Value |
|
||||
| ---------------- | ------------------------------------------------------------------------------------ |
|
||||
| `Doc._.trf_data` | CuratedTransformer tokens and outputs for the `Doc` object. ~~DocTransformerOutput~~ |
|
||||
|
||||
## Config and implementation {id="config"}
|
||||
|
@ -74,8 +82,8 @@ on the transformer architectures and their arguments and hyperparameters.
|
|||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [CuratedTransformerModel](/api/architectures#CuratedTransformerModel). ~~Model[List[Doc], FullCuratedTransformerBatch]~~ |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [CuratedTransformerModel](/api/architectures#CuratedTransformerModel). ~~Model[List[Doc], FullCuratedTransformerBatch]~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
|
@ -110,16 +118,16 @@ https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_
|
|||
> trf = CuratedTransformer(nlp.vocab, model)
|
||||
> ```
|
||||
|
||||
Construct a `CuratedTransformer` component. One or more subsequent spaCy components can
|
||||
use the transformer outputs as features in its model, with gradients
|
||||
backpropagated to the single shared weights. The activations from the
|
||||
Construct a `CuratedTransformer` component. One or more subsequent spaCy
|
||||
components can use the transformer outputs as features in its model, with
|
||||
gradients backpropagated to the single shared weights. The activations from the
|
||||
transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
|
||||
attribute. You can also provide a callback to set additional annotations. In
|
||||
your application, you would normally use a shortcut for this and instantiate the
|
||||
component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Description |
|
||||
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | One of the supported pre-trained transformer models. ~~Model~~ |
|
||||
| _keyword-only_ | |
|
||||
|
@ -194,7 +202,7 @@ by [`Language.initialize`](/api/language#initialize).
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
|
@ -221,9 +229,9 @@ modifying them.
|
|||
## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
|
||||
|
||||
Assign the extracted features to the `Doc` objects. By default, the
|
||||
[`DocTransformerOutput`](/api/curated-transformer#doctransformeroutput) object is written to the
|
||||
[`Doc._.trf_data`](#assigned-attributes) attribute. Your `set_extra_annotations`
|
||||
callback is then called, if provided.
|
||||
[`DocTransformerOutput`](/api/curated-transformer#doctransformeroutput) object
|
||||
is written to the [`Doc._.trf_data`](#assigned-attributes) attribute. Your
|
||||
`set_extra_annotations` callback is then called, if provided.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
@ -233,29 +241,28 @@ callback is then called, if provided.
|
|||
> trf.set_annotations(docs, scores)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ----------------------------------------------------- |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| Name | Description |
|
||||
| -------- | ------------------------------------------------------------ |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
|
||||
|
||||
## CuratedTransformer.update {id="update",tag="method"}
|
||||
|
||||
Prepare for an update to the transformer.
|
||||
|
||||
Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component is unusual
|
||||
in that it does not receive "gold standard" annotations to calculate
|
||||
a weight update. The optimal output of the transformer data is unknown;
|
||||
it's a hidden layer inside the network that is updated by backpropagating
|
||||
from output layers.
|
||||
Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component
|
||||
is unusual in that it does not receive "gold standard" annotations to calculate
|
||||
a weight update. The optimal output of the transformer data is unknown; it's a
|
||||
hidden layer inside the network that is updated by backpropagating from output
|
||||
layers.
|
||||
|
||||
The `CuratedTransformer` component therefore does not perform a weight update
|
||||
during its own `update` method. Instead, it runs its transformer model
|
||||
and communicates the output and the backpropagation callback to any
|
||||
downstream components that have been connected to it via the
|
||||
TransformerListener sublayer. If there are multiple listeners, the last
|
||||
layer will actually backprop to the transformer and call the optimizer,
|
||||
while the others simply increment the gradients.
|
||||
|
||||
during its own `update` method. Instead, it runs its transformer model and
|
||||
communicates the output and the backpropagation callback to any downstream
|
||||
components that have been connected to it via the TransformerListener sublayer.
|
||||
If there are multiple listeners, the last layer will actually backprop to the
|
||||
transformer and call the optimizer, while the others simply increment the
|
||||
gradients.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
@ -339,7 +346,7 @@ Load the pipe from disk. Modifies the object in place and returns it.
|
|||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
|
||||
|
||||
|
@ -356,7 +363,7 @@ Serialize the pipe to a bytestring.
|
|||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ |
|
||||
| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ |
|
||||
|
||||
## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
|
||||
|
||||
|
@ -375,7 +382,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## Serialization fields {id="serialization-fields"}
|
||||
|
||||
|
@ -397,16 +404,16 @@ serialization by passing in the string names via the `exclude` argument.
|
|||
|
||||
## DocTransformerOutput {id="transformerdata",tag="dataclass"}
|
||||
|
||||
CuratedTransformer tokens and outputs for one `Doc` object. The transformer models
|
||||
return tensors that refer to a whole padded batch of documents. These tensors
|
||||
are wrapped into the
|
||||
CuratedTransformer tokens and outputs for one `Doc` object. The transformer
|
||||
models return tensors that refer to a whole padded batch of documents. These
|
||||
tensors are wrapped into the
|
||||
[FullCuratedTransformerBatch](/api/transformer#fulltransformerbatch) object. The
|
||||
`FullCuratedTransformerBatch` then splits out the per-document data, which is handled
|
||||
by this class. Instances of this class are typically assigned to the
|
||||
`FullCuratedTransformerBatch` then splits out the per-document data, which is
|
||||
handled by this class. Instances of this class are typically assigned to the
|
||||
[`Doc._.trf_data`](/api/transformer#assigned-attributes) extension attribute.
|
||||
|
||||
| Name | Description |
|
||||
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `tokens` | A slice of the tokens data produced by the tokenizer. This may have several fields, including the token IDs, the texts and the attention mask. See the [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) object for details. ~~dict~~ |
|
||||
| `model_output` | The model output from the transformer model, determined by the model and transformer config. New in `spacy-transformers` v1.1.0. ~~transformers.file_utils.ModelOutput~~ |
|
||||
| `tensors` | The `model_output` in the earlier `transformers` tuple format converted using [`ModelOutput.to_tuple()`](https://huggingface.co/transformers/main_classes/output.html#transformers.file_utils.ModelOutput.to_tuple). Returns `Tuple` instead of `List` as of `spacy-transformers` v1.1.0. ~~Tuple[Union[FloatsXd, List[FloatsXd]]]~~ |
|
||||
|
@ -417,26 +424,26 @@ by this class. Instances of this class are typically assigned to the
|
|||
|
||||
Create an empty `DocTransformerOutput` container.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------- |
|
||||
| Name | Description |
|
||||
| ----------- | --------------------------------------- |
|
||||
| **RETURNS** | The container. ~~DocTransformerOutput~~ |
|
||||
|
||||
|
||||
## Span getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
|
||||
|
||||
Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
|
||||
return a lists of [`Span`](/api/span) objects for each doc to be processed by
|
||||
the transformer. This is used to manage long documents by cutting them into
|
||||
smaller sequences before running the transformer. The spans are allowed to
|
||||
overlap, and you can also omit sections of the `Doc` if they are not relevant. Span getters can be referenced in the `[components.transformer.model.with_spans]`
|
||||
block of the config to customize the sequences processed by the transformer.
|
||||
overlap, and you can also omit sections of the `Doc` if they are not relevant.
|
||||
Span getters can be referenced in the
|
||||
`[components.transformer.model.with_spans]` block of the config to customize the
|
||||
sequences processed by the transformer.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------- |
|
||||
| `docs` | A batch of `Doc` objects. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
|
||||
|
||||
|
||||
### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
|
@ -468,7 +475,7 @@ Placeholder text for tokenizers
|
|||
Construct a callback that initializes a Byte-BPE piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|---------------|---------------------------------------|
|
||||
| ------------- | ------------------------------------- |
|
||||
| `vocab_path` | Path to the vocabulary file. ~~Path~~ |
|
||||
| `merges_path` | Path to the merges file. ~~Path~~ |
|
||||
|
||||
|
@ -477,30 +484,29 @@ Construct a callback that initializes a Byte-BPE piece encoder model.
|
|||
Construct a callback that initializes a character piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|-------------|-----------------------------------------------------------------------------|
|
||||
| ----------- | --------------------------------------------------------------------------- |
|
||||
| `path` | Path to the serialized character model. ~~Path~~ |
|
||||
| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
|
||||
| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ |
|
||||
| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
|
||||
| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ |
|
||||
|
||||
|
||||
### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a HuggingFace piece encoder model. Used in conjunction with the HuggingFace model loader.
|
||||
Construct a callback that initializes a HuggingFace piece encoder model. Used in
|
||||
conjunction with the HuggingFace model loader.
|
||||
|
||||
| Name | Description |
|
||||
|------------|--------------------------------------------|
|
||||
| ---------- | ------------------------------------------ |
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
|
||||
### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a SentencePiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|--------|------------------------------------------------------|
|
||||
| ------ | ---------------------------------------------------- |
|
||||
| `path` | Path to the serialized SentencePiece model. ~~Path~~ |
|
||||
|
||||
### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
|
||||
|
@ -508,39 +514,38 @@ Construct a callback that initializes a SentencePiece piece encoder model.
|
|||
Construct a callback that initializes a WordPiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|--------|--------------------------------------------------|
|
||||
| ------ | ------------------------------------------------ |
|
||||
| `path` | Path to the serialized WordPiece model. ~~Path~~ |
|
||||
|
||||
## Model Loaders
|
||||
|
||||
### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights from a corresponding HuggingFace model.
|
||||
Construct a callback that initializes a supported transformer model with weights
|
||||
from a corresponding HuggingFace model.
|
||||
|
||||
| Name | Description |
|
||||
|------------|--------------------------------------------|
|
||||
| ---------- | ------------------------------------------ |
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights from a PyTorch checkpoint.
|
||||
Construct a callback that initializes a supported transformer model with weights
|
||||
from a PyTorch checkpoint.
|
||||
|
||||
| Name | Description |
|
||||
|--------|------------------------------------------|
|
||||
| ------ | ---------------------------------------- |
|
||||
| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
|
||||
|
||||
## Callbacks
|
||||
|
||||
### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"}
|
||||
|
||||
Construct a callback that can be used to gradually unfreeze the
|
||||
weights of one or more Transformer components during training. This
|
||||
can be used to prevent catastrophic forgetting during fine-tuning.
|
||||
|
||||
Construct a callback that can be used to gradually unfreeze the weights of one
|
||||
or more Transformer components during training. This can be used to prevent
|
||||
catastrophic forgetting during fine-tuning.
|
||||
|
||||
| Name | Description |
|
||||
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ |
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user