mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 01:34:30 +03:00
formatting
This commit is contained in:
parent
abba639565
commit
0d55b6ebb4
|
@ -546,7 +546,7 @@ network has an internal CNN Tok2Vec layer and uses attention.
|
|||
<!-- TODO: model return type -->
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| -------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||
| `pretrained_vectors` | Whether or not pretrained vectors will be used in addition to the feature vectors. ~~bool~~ |
|
||||
| `width` | Output dimension of the feature encoding step. ~~int~~ |
|
||||
|
@ -586,7 +586,7 @@ architecture is usually less accurate than the ensemble, but runs faster.
|
|||
<!-- TODO: model return type -->
|
||||
|
||||
| Name | Description |
|
||||
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
||||
|
@ -611,7 +611,7 @@ others, but may not be as accurate, especially if texts are short.
|
|||
<!-- TODO: model return type -->
|
||||
|
||||
| Name | Description |
|
||||
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||
| `ngram_size` | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features. ~~int~~ |
|
||||
| `no_output_layer` | Whether or not to add an output layer to the model (`Softmax` activation if `exclusive_classes` is `True`, else `Logistic`. ~~bool~~ |
|
||||
|
|
Loading…
Reference in New Issue
Block a user