small fixes

This commit is contained in:
svlandeg 2020-06-22 10:05:12 +02:00
parent 6a75992af6
commit 0d64c435b0
7 changed files with 18 additions and 20 deletions

View File

@ -30,7 +30,7 @@ ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)}
model=("Model name, should have pretrained word embeddings", "positional", None, str),
output_dir=("Optional output directory", "option", "o", Path),
)
def main(model=None, output_dir=None):
def main(model, output_dir=None):
"""Load the model and create the KB with pre-defined entity encodings.
If an output_dir is provided, the KB will be stored there in a file 'kb'.
The updated vocab will also be written to a directory in the output_dir."""

View File

@ -14,11 +14,11 @@ class Corpus:
"""
def __init__(self, train_loc, dev_loc, limit=0):
"""Create a GoldCorpus.
"""Create a Corpus.
train (str / Path): File or directory of training data.
dev (str / Path): File or directory of development data.
RETURNS (GoldCorpus): The newly created object.
RETURNS (Corpus): The newly created object.
"""
self.train_loc = train_loc
self.dev_loc = dev_loc

View File

@ -1,3 +1,5 @@
import warnings
import numpy
from ..tokens import Token
@ -204,24 +206,23 @@ def _annot2array(vocab, tok_annot, doc_annot):
values = []
for key, value in doc_annot.items():
if key == "entities":
if value:
if value:
if key == "entities":
words = tok_annot["ORTH"]
spaces = tok_annot["SPACY"]
ent_iobs, ent_types = _parse_ner_tags(value, vocab, words, spaces)
tok_annot["ENT_IOB"] = ent_iobs
tok_annot["ENT_TYPE"] = ent_types
elif key == "links":
if value:
elif key == "links":
entities = doc_annot.get("entities", {})
if value and not entities:
raise ValueError(Errors.E981)
ent_kb_ids = _parse_links(vocab, tok_annot["ORTH"], value, entities)
tok_annot["ENT_KB_ID"] = ent_kb_ids
elif key == "cats":
pass
else:
raise ValueError(f"Unknown doc attribute: {key}")
elif key == "cats":
pass
else:
raise ValueError(f"Unknown doc attribute: {key}")
for key, value in tok_annot.items():
if key not in IDS:
@ -298,6 +299,7 @@ def _fix_legacy_dict_data(example_dict):
if "HEAD" in token_dict and "SENT_START" in token_dict:
# If heads are set, we don't also redundantly specify SENT_START.
token_dict.pop("SENT_START")
warnings.warn("Ignoring annotations for sentence starts, as dependency heads are set")
return {
"token_annotation": token_dict,
"doc_annotation": doc_dict

View File

@ -48,9 +48,7 @@ def build_masked_language_model(vocab, wrapped_model, mask_prob=0.15):
def mlm_forward(model, docs, is_train):
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
output, backprop = model.get_ref("wrapped-model").begin_update(
docs
) # drop=drop
output, backprop = model.get_ref("wrapped-model").begin_update(docs)
def mlm_backward(d_output):
d_output *= 1 - mask

View File

@ -147,7 +147,7 @@ def hash_char_embed_bilstm_v1(
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
def LayerNormalizedMaxout(width, maxout_pieces):
return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True,)
return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
@registry.architectures.register("spacy.MultiHashEmbed.v1")

View File

@ -7,10 +7,10 @@ from spacy.pipeline.defaults import default_ner
from spacy.pipeline import EntityRecognizer, EntityRuler
from spacy.vocab import Vocab
from spacy.syntax.ner import BiluoPushDown
from spacy.gold import Example
from spacy.tokens import Doc
from ..util import make_tempdir
from ...gold import Example
TRAIN_DATA = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),

View File

@ -596,8 +596,6 @@ def test_split_sents(merged_dict):
assert token_annotation_2["sent_starts"] == [1, 0, 0, 0]
# This fails on some None value? Need to look into that.
@pytest.mark.xfail # TODO
def test_tuples_to_example(vocab, merged_dict):
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
merged_dict = dict(merged_dict)
@ -607,6 +605,6 @@ def test_tuples_to_example(vocab, merged_dict):
assert words == merged_dict["words"]
tags = [token.tag_ for token in ex.reference]
assert tags == merged_dict["tags"]
sent_starts = [token.is_sent_start for token in ex.reference]
sent_starts = [bool(token.is_sent_start) for token in ex.reference]
assert sent_starts == [bool(v) for v in merged_dict["sent_starts"]]
ex.reference.cats == cats
assert ex.reference.cats == cats