move-files

This commit is contained in:
Richard Liaw 2020-06-22 17:59:08 -07:00
parent 8bbf8c78bf
commit 0df7d44978
3 changed files with 9 additions and 232 deletions

View File

@ -1,73 +0,0 @@
"""Parameter Server distributed training with Ray."""
import threading
import ray
from wasabi import msg
from .. import util
from spacy.cli.ray_utils import create_optimizer
class OptimizerWorker:
def __init__(self, config_path, world_size):
self.optimizer = create_optimizer(config_path)
self.new_weights = None
self.barrier = threading.Barrier(world_size)
self.lock = threading.Lock()
self.waiting = 0
self.weights_dict = {}
self.grad_dict = {}
self.world_size = world_size
def call(self, key, weights, gradient, *, lr_scale=1.0):
self.lock.acquire()
if self.waiting < self.world_size - 1:
if self.waiting == 0:
self.grad_dict[key] = gradient.copy()
self.weights_dict[key] = weights.copy()
else:
self.grad_dict[key] += gradient
self.waiting = self.barrier.n_waiting + 1
self.lock.release()
self.barrier.wait()
else:
self.grad_dict[key] += gradient
self.lock.release()
self.grad_dict[key] /= self.world_size
new_weights, new_grads = self.optimizer(
key, self.weights_dict[key], self.grad_dict[key], lr_scale=lr_scale)
self.weights_dict[key] = new_weights
self.grad_dict[key] = new_grads
self.waiting = 0
self.barrier.wait()
return self.weights_dict[key], self.grad_dict[key]
def fetch(self):
return self.optimizer
def step_schedules(self):
self.optimizer.step_schedules()
class RayOptimizer:
local_optimizer = None
def __init__(self, config_path, use_gpu, world_size):
RemoteOptimizer = ray.remote(OptimizerWorker)
options = {"max_concurrency": world_size}
if use_gpu >= 0:
options["num_gpus"] = 0.1
RemoteOptimizer = RemoteOptimizer.options(**options)
self.optimizer = RemoteOptimizer.remote(config_path, world_size)
self.sync()
def sync(self):
self.local_optimizer = ray.get(self.optimizer.fetch.remote())
def __call__(self, *args, **kwargs):
weights, grads = ray.get(self.optimizer.call.remote(*args, **kwargs))
return weights.copy(), grads.copy()
def __getattr__(self, name):
return getattr(self.local_optimizer, name)
def step_schedules(self):
self.optimizer.step_schedules.remote()
self.sync()

View File

@ -1,81 +0,0 @@
"""Allreduce distributed training with Ray."""
import random
import ray
import numpy
from wasabi import msg
from .. import util
cp = None
nccl = None
from typing import Dict, Optional, Union, Tuple, List, cast
from thinc.types import FloatsXd
def create_optimizer(config_path):
msg.info(f"Loading config from: {config_path}")
config = util.load_config(config_path, create_objects=False)
util.fix_random_seed(config["training"]["seed"])
config = util.load_config(config_path, create_objects=True)
training = config["training"]
return training["optimizer"]
class RayWorker:
def __init__(self, rank, world_size):
global nccl
from cupy.cuda import nccl
self.rank = rank
self.world_size = world_size
self.unique_id = nccl.get_unique_id()
def initialize(self, head_id):
self.communicator = nccl.NcclCommunicator(self.world_size, head_id, self.rank)
def get_unique_id(self):
return self.unique_id
def execute(self, fn):
return fn(self)
class AllreduceOptimizer:
def __init__(self, config_path, communicator):
global cp
import cupy as cp
global nccl
from cupy.cuda import nccl
self.optimizer = create_optimizer(config_path)
self.communicator = communicator
self.weights_synced = set()
def allreduce(self, tensor):
self.communicator.allReduce(
tensor.data.ptr,
tensor.data.ptr,
tensor.size,
nccl.NCCL_FLOAT32,
nccl.NCCL_SUM, # TODO: is this a sum?
cp.cuda.Stream.null.ptr
)
return tensor
def __call__(
self,
key: Tuple[int, str],
weights: FloatsXd,
gradient: FloatsXd,
*,
lr_scale: float = 1.0,
):
if key not in self.weights_synced:
self.weights_synced.add(key)
weights = self.allreduce(weights) / self.communicator.size()
gradient = self.allreduce(gradient) / self.communicator.size()
flat_weights, gradient = self.optimizer(key, weights, gradient, lr_scale=lr_scale)
return flat_weights, gradient
def __getattr__(self, name):
return getattr(self.optimizer, name)

View File

@ -197,71 +197,15 @@ def train_cli(
)
if num_workers and num_workers > 1:
import ray
ray.init()
if strategy == "ps":
from spacy.cli.ray_param_server import RayOptimizer
remote_train = ray.remote(setup_and_train)
if use_gpu >= 0:
msg.info("Enabling GPU with Ray")
remote_train = remote_train.options(num_gpus=0.9)
train_args["remote_optimizer"] = RayOptimizer(
config_path, use_gpu=use_gpu, world_size=num_workers)
ray.get([remote_train.remote(
use_gpu,
train_args,
rank=rank,
total_workers=num_workers) for rank in range(num_workers)])
elif strategy == "allreduce" and use_gpu >= 0:
from spacy.cli.ray_utils import RayWorker, AllreduceOptimizer
msg.info("Enabling GPU with Ray")
RemoteRayWorker = ray.remote(RayWorker).options(num_gpus=1)
workers = [RemoteRayWorker.remote(rank, num_workers) for rank in range(num_workers)]
head_id = ray.get(workers[0].get_unique_id.remote())
ray.get([w.initialize.remote(head_id) for w in workers])
def train_fn(worker):
optimizer = AllreduceOptimizer(config_path, worker.communicator)
train_args["remote_optimizer"] = optimizer
return setup_and_train(True, train_args, worker.rank, worker.world_size)
ray.get([w.execute.remote(train_fn) for w in workers])
elif strategy == "debug":
remote_train = ray.remote(setup_and_train)
if use_gpu >= 0:
msg.info("Enabling GPU with Ray")
remote_train = remote_train.options(num_gpus=0.9)
ray.get([remote_train.remote(
use_gpu,
train_args,
rank=rank,
total_workers=num_workers) for rank in range(num_workers)])
else:
raise NotImplementedError
try:
from ray_spacy import distributed_setup_and_train
except ImportError:
msg.fail("Need to install ray_spacy to use distributed training!", exits=1)
distributed_setup_and_train(use_gpu, num_workers, strategy, train_args)
else:
setup_and_train(use_gpu, train_args)
world_rank = None
world_size = None
def setup_and_train(use_gpu, train_args, rank=None, total_workers=None):
if rank is not None:
global world_rank
world_rank = rank
global world_size
world_size = total_workers
if use_gpu >= 0:
use_gpu = 0
if use_gpu >= 0:
msg.info(f"Using GPU: {use_gpu}")
util.use_gpu(use_gpu)
else:
msg.info("Using CPU")
train(**train_args)
def train(
config_path,
data_paths,
@ -270,6 +214,7 @@ def train(
tag_map=None,
weights_data=None,
omit_extra_lookups=False,
disable_tqdm=False,
remote_optimizer=None
):
msg.info(f"Loading config from: {config_path}")
@ -285,6 +230,8 @@ def train(
msg.info("Creating nlp from config")
nlp = util.load_model_from_config(nlp_config)
optimizer = training["optimizer"]
# TODO: is there a cleaner way of doing this, instead of creating
# the optimizer twice? are there any problems when doing this?
if remote_optimizer:
optimizer = remote_optimizer
limit = training["limit"]
@ -402,10 +349,7 @@ def train(
msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
print_row = setup_printer(training, nlp)
tqdm_args = dict(total=training["eval_frequency"], leave=False)
global world_rank
if world_rank is not None:
tqdm_args["disable"] = bool(world_rank != 0)
tqdm_args = dict(total=training["eval_frequency"], leave=False, disable=disable_tqdm)
try:
progress = tqdm.tqdm(**tqdm_args)
for batch, info, is_best_checkpoint in training_step_iterator:
@ -461,19 +405,6 @@ def create_train_batches(nlp, corpus, cfg):
raise ValueError(Errors.E988)
random.shuffle(train_examples)
# # TODO: with large batches, this can be bad.
# if world_size is not None:
# # Taken from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/distributed.py
# num_samples = int(math.ceil(len(train_examples) * 1.0 / world_size))
# total_size = num_samples * world_size # expected to overflow
# train_examples += train_examples[:(total_size - len(train_examples))]
# assert len(train_examples) == total_size
# # subsample
# train_examples = train_examples[world_rank:total_size:world_size]
# assert len(train_examples) == num_samples
# print(f"Reset epoch: Only using {num_samples} out of {total_size} samples")
batches = util.minibatch_by_words(
train_examples,
size=cfg["batch_size"],