mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-08 06:04:57 +03:00
Add foundation for find-threshold CLI functionality.
This commit is contained in:
parent
cd09614ab2
commit
0e5cd6b0c0
|
@ -27,6 +27,8 @@ from .project.dvc import project_update_dvc # noqa: F401
|
||||||
from .project.push import project_push # noqa: F401
|
from .project.push import project_push # noqa: F401
|
||||||
from .project.pull import project_pull # noqa: F401
|
from .project.pull import project_pull # noqa: F401
|
||||||
from .project.document import project_document # noqa: F401
|
from .project.document import project_document # noqa: F401
|
||||||
|
from .find_threshold import find_threshold # noqa: F401
|
||||||
|
from .find_threshold import find_threshold_cli # noqa: F401
|
||||||
|
|
||||||
|
|
||||||
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
||||||
|
|
121
spacy/cli/find_threshold.py
Normal file
121
spacy/cli/find_threshold.py
Normal file
|
@ -0,0 +1,121 @@
|
||||||
|
from pathlib import Path
|
||||||
|
import logging
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
# import numpy
|
||||||
|
|
||||||
|
import spacy
|
||||||
|
from ._util import app, Arg, Opt
|
||||||
|
from .. import util
|
||||||
|
from ..pipeline import MultiLabel_TextCategorizer
|
||||||
|
|
||||||
|
_DEFAULTS = {
|
||||||
|
"aggregation": "weighted",
|
||||||
|
"pipe_name": None,
|
||||||
|
"n_trials": 10,
|
||||||
|
"beta": 1,
|
||||||
|
"reverse": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@app.command(
|
||||||
|
"find-threshold",
|
||||||
|
context_settings={"allow_extra_args": False, "ignore_unknown_options": True},
|
||||||
|
)
|
||||||
|
def find_threshold_cli(
|
||||||
|
# fmt: off
|
||||||
|
model_path: Path = Arg(..., help="Path to model file", exists=True, allow_dash=True),
|
||||||
|
doc_path: Path = Arg(..., help="Path to doc bin file", exists=True, allow_dash=True),
|
||||||
|
aggregation: str = Arg(_DEFAULTS["aggregation"], help="How to aggregate F-scores over labels. One of ('micro', 'macro', 'weighted')", exists=True, allow_dash=True),
|
||||||
|
pipe_name: Optional[str] = Opt(_DEFAULTS["pipe_name"], "--pipe_name", "-p", help="Name of pipe to examine thresholds for"),
|
||||||
|
n_trials: int = Opt(_DEFAULTS["n_trials"], "--n_trials", "-n", help="Number of trials to determine optimal thresholds"),
|
||||||
|
beta: float = Opt(_DEFAULTS["beta"], "--beta", help="Beta for F1 calculation. Ignored if different metric is used"),
|
||||||
|
reverse: bool = Opt(_DEFAULTS["reverse"], "--reverse", "-r", help="Minimizes metric instead of maximizing it."),
|
||||||
|
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||||||
|
# fmt: on
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Runs prediction trials for `textcat` models with varying tresholds to maximize the specified metric from CLI.
|
||||||
|
model_path (Path): Path to file with trained model.
|
||||||
|
doc_path (Path): Path to file with DocBin with docs to use for threshold search.
|
||||||
|
aggregation (str): How to aggregate F-scores across labels. One of ('micro', 'macro', 'weighted').
|
||||||
|
pipe_name (Optional[str]): Name of pipe to examine thresholds for. If None, pipe of type MultiLabel_TextCategorizer
|
||||||
|
is seleted. If there are multiple, an error is raised.
|
||||||
|
n_trials (int): Number of trials to determine optimal thresholds
|
||||||
|
beta (float): Beta for F1 calculation. Ignored if different metric is used.
|
||||||
|
reverse (bool): Whether to minimize metric instead of maximizing it.
|
||||||
|
verbose (bool): Display more information for debugging purposes
|
||||||
|
"""
|
||||||
|
|
||||||
|
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||||
|
find_threshold(
|
||||||
|
model_path,
|
||||||
|
doc_path,
|
||||||
|
aggregation=aggregation,
|
||||||
|
pipe_name=pipe_name,
|
||||||
|
n_trials=n_trials,
|
||||||
|
beta=beta,
|
||||||
|
reverse=reverse,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def find_threshold(
|
||||||
|
model_path: Path,
|
||||||
|
doc_path: Path,
|
||||||
|
*,
|
||||||
|
aggregation: str = _DEFAULTS["aggregation"],
|
||||||
|
pipe_name: Optional[str] = _DEFAULTS["pipe_name"],
|
||||||
|
n_trials: int = _DEFAULTS["n_trials"],
|
||||||
|
beta: float = _DEFAULTS["beta"],
|
||||||
|
reverse: bool = _DEFAULTS["reverse"]
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Runs prediction trials for `textcat` models with varying tresholds to maximize the specified metric.
|
||||||
|
model_path (Path): Path to file with trained model.
|
||||||
|
doc_path (Path): Path to file with DocBin with docs to use for threshold search.
|
||||||
|
aggregation (str): How to aggregate F-scores across labels. One of ('micro', 'macro', 'weighted').
|
||||||
|
pipe_name (Optional[str]): Name of pipe to examine thresholds for. If None, pipe of type MultiLabel_TextCategorizer
|
||||||
|
is seleted. If there are multiple, an error is raised.
|
||||||
|
n_trials (int): Number of trials to determine optimal thresholds
|
||||||
|
beta (float): Beta for F1 calculation. Ignored if different metric is used.
|
||||||
|
reverse (bool): Whether to minimize metric instead of maximizing it.
|
||||||
|
"""
|
||||||
|
|
||||||
|
nlp = spacy.load(model_path)
|
||||||
|
pipe: Optional[MultiLabel_TextCategorizer] = None
|
||||||
|
selected_pipe_name: Optional[str] = pipe_name
|
||||||
|
|
||||||
|
for _pipe_name, _pipe in nlp.pipeline:
|
||||||
|
if pipe_name and _pipe_name == pipe_name:
|
||||||
|
if not isinstance(_pipe, MultiLabel_TextCategorizer):
|
||||||
|
# todo convert to error
|
||||||
|
assert "Specified name is not a MultiLabel_TextCategorizer."
|
||||||
|
pipe = _pipe
|
||||||
|
break
|
||||||
|
elif pipe_name is None:
|
||||||
|
if isinstance(_pipe, MultiLabel_TextCategorizer):
|
||||||
|
if pipe:
|
||||||
|
# todo convert to error
|
||||||
|
assert (
|
||||||
|
"Multiple components of type MultiLabel_TextCategorizer in pipeline. Please specify "
|
||||||
|
"component name."
|
||||||
|
)
|
||||||
|
pipe = _pipe
|
||||||
|
selected_pipe_name = _pipe_name
|
||||||
|
|
||||||
|
# counts = {label: 0 for label in pipe.labels}
|
||||||
|
# true_positive_counts = counts.copy()
|
||||||
|
# false_positive_counts = counts.copy()
|
||||||
|
# f_scores = counts.copy()
|
||||||
|
# thresholds = numpy.linspace(0, 1, n_trials)
|
||||||
|
|
||||||
|
# todo iterate over docs, assert categories are 1 or 0.
|
||||||
|
# todo run pipe for all docs in docbin.
|
||||||
|
# todo iterate over thresholds. for each:
|
||||||
|
# - iterate over all docs. for each:
|
||||||
|
# - iterate over all labels. for each:
|
||||||
|
# - mark as positive/negative based on current threshold
|
||||||
|
# - update count, f_score stats
|
||||||
|
# - compute f_scores for all labels
|
||||||
|
# - output best threshold
|
||||||
|
print(selected_pipe_name, pipe.labels, pipe.predict([nlp("aaa")]))
|
Loading…
Reference in New Issue
Block a user