Fix handling of optional [pretraining] block (#5954)

* Fix handling of optional [pretraining] block

* Remote pretraining from default config

* Fix test

* Add schema option for empty pretrain block
This commit is contained in:
Ines Montani 2020-08-24 15:56:03 +02:00 committed by GitHub
parent 463f1c8623
commit 0e7f99da58
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 84 additions and 45 deletions

View File

@ -51,7 +51,7 @@ def debug_model_cli(
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=config_overrides)
nlp, config = util.load_model_from_config(config_path)
seed = config["pretraining"]["seed"]
seed = config["training"]["seed"]
if seed is not None:
msg.info(f"Fixing random seed: {seed}")
fix_random_seed(seed)

View File

@ -7,6 +7,7 @@ import srsly
import re
from .. import util
from ..language import DEFAULT_CONFIG_PRETRAIN_PATH
from ..schemas import RecommendationSchema
from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND
@ -48,6 +49,7 @@ def init_fill_config_cli(
# fmt: off
base_path: Path = Arg(..., help="Base config to fill", exists=True, dir_okay=False),
output_file: Path = Arg("-", help="File to save config.cfg to (or - for stdout)", allow_dash=True),
pretraining: bool = Opt(False, "--pretraining", "-p", help="Include config for pretraining (with 'spacy pretrain')"),
diff: bool = Opt(False, "--diff", "-D", help="Print a visual diff highlighting the changes")
# fmt: on
):
@ -58,19 +60,24 @@ def init_fill_config_cli(
can be used with a config generated via the training quickstart widget:
https://nightly.spacy.io/usage/training#quickstart
"""
fill_config(output_file, base_path, diff=diff)
fill_config(output_file, base_path, pretraining=pretraining, diff=diff)
def fill_config(
output_file: Path, base_path: Path, *, diff: bool = False
output_file: Path, base_path: Path, *, pretraining: bool = False, diff: bool = False
) -> Tuple[Config, Config]:
is_stdout = str(output_file) == "-"
msg = Printer(no_print=is_stdout)
with show_validation_error(hint_fill=False):
config = util.load_config(base_path)
nlp, _ = util.load_model_from_config(config, auto_fill=True)
filled = nlp.config
if pretraining:
validate_config_for_pretrain(filled, msg)
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
before = config.to_str()
after = nlp.config.to_str()
after = filled.to_str()
if before == after:
msg.warn("Nothing to auto-fill: base config is already complete")
else:
@ -84,7 +91,7 @@ def fill_config(
print(diff_strings(before, after))
msg.divider("END CONFIG DIFF")
print("")
save_config(nlp.config, output_file, is_stdout=is_stdout)
save_config(filled, output_file, is_stdout=is_stdout)
def init_config(
@ -132,12 +139,9 @@ def init_config(
msg.info("Generated template specific for your use case")
for label, value in use_case.items():
msg.text(f"- {label}: {value}")
use_transformer = bool(template_vars.use_transformer)
with show_validation_error(hint_fill=False):
config = util.load_config_from_str(base_template)
nlp, _ = util.load_model_from_config(config, auto_fill=True)
if use_transformer:
nlp.config.pop("pretraining", {}) # TODO: solve this better
msg.good("Auto-filled config with all values")
save_config(nlp.config, output_file, is_stdout=is_stdout)
@ -161,3 +165,15 @@ def has_spacy_transformers() -> bool:
return True
except ImportError:
return False
def validate_config_for_pretrain(config: Config, msg: Printer) -> None:
if "tok2vec" not in config["nlp"]["pipeline"]:
msg.warn(
"No tok2vec component found in the pipeline. If your tok2vec "
"component has a different name, you may need to adjust the "
"tok2vec_model reference in the [pretraining] block. If you don't "
"have a tok2vec component, make sure to add it to your [components] "
"and the pipeline specified in the [nlp] block, so you can pretrain "
"weights for it."
)

View File

@ -90,19 +90,20 @@ def pretrain(
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=config_overrides)
nlp, config = util.load_model_from_config(config)
# TODO: validate that [pretraining] block exists
pretrain_config = config["pretraining"]
if not pretrain_config:
# TODO: What's the solution here? How do we handle optional blocks?
msg.fail("The [pretraining] block in your config is empty", exits=1)
if not output_dir.exists():
output_dir.mkdir()
msg.good(f"Created output directory: {output_dir}")
seed = config["pretraining"]["seed"]
seed = pretrain_config["seed"]
if seed is not None:
fix_random_seed(seed)
if use_gpu >= 0 and config["pretraining"]["use_pytorch_for_gpu_memory"]:
if use_gpu >= 0 and pretrain_config["use_pytorch_for_gpu_memory"]:
use_pytorch_for_gpu_memory()
config.to_disk(output_dir / "config.cfg")
msg.good("Saved config file in the output directory")
pretrain_config = config["pretraining"]
if texts_loc != "-": # reading from a file
with msg.loading("Loading input texts..."):
texts = list(srsly.read_jsonl(texts_loc))

View File

@ -117,7 +117,7 @@ def train(
# Load a pretrained tok2vec model - cf. CLI command 'pretrain'
if weights_data is not None:
tok2vec_path = config.get("pretraining", {}).get("tok2vec_model", None)
tok2vec_path = config["pretraining"].get("tok2vec_model", None)
if tok2vec_path is None:
msg.fail(
f"To use a pretrained tok2vec model, the config needs to specify which "

View File

@ -90,29 +90,3 @@ eps = 1e-8
warmup_steps = 250
total_steps = 20000
initial_rate = 0.001
[pretraining]
max_epochs = 1000
min_length = 5
max_length = 500
dropout = 0.2
n_save_every = null
batch_size = 3000
seed = ${system.seed}
use_pytorch_for_gpu_memory = ${system.use_pytorch_for_gpu_memory}
tok2vec_model = "components.tok2vec.model"
[pretraining.objective]
type = "characters"
n_characters = 4
[pretraining.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 1e-8
learn_rate = 0.001

View File

@ -0,0 +1,25 @@
[pretraining]
max_epochs = 1000
min_length = 5
max_length = 500
dropout = 0.2
n_save_every = null
batch_size = 3000
seed = ${system.seed}
use_pytorch_for_gpu_memory = ${system.use_pytorch_for_gpu_memory}
tok2vec_model = "components.tok2vec.model"
[pretraining.objective]
type = "characters"
n_characters = 4
[pretraining.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 1e-8
learn_rate = 0.001

View File

@ -37,6 +37,9 @@ from . import about
# This is the base config will all settings (training etc.)
DEFAULT_CONFIG_PATH = Path(__file__).parent / "default_config.cfg"
DEFAULT_CONFIG = util.load_config(DEFAULT_CONFIG_PATH)
# This is the base config for the [pretraining] block and currently not included
# in the main config and only added via the 'init fill-config' command
DEFAULT_CONFIG_PRETRAIN_PATH = Path(__file__).parent / "default_config_pretraining.cfg"
class BaseDefaults:

View File

@ -233,6 +233,11 @@ class ConfigSchemaNlp(BaseModel):
arbitrary_types_allowed = True
class ConfigSchemaPretrainEmpty(BaseModel):
class Config:
extra = "forbid"
class ConfigSchemaPretrain(BaseModel):
# fmt: off
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for")
@ -257,14 +262,15 @@ class ConfigSchemaPretrain(BaseModel):
class ConfigSchema(BaseModel):
training: ConfigSchemaTraining
nlp: ConfigSchemaNlp
pretraining: Optional[ConfigSchemaPretrain]
pretraining: Union[ConfigSchemaPretrain, ConfigSchemaPretrainEmpty] = {}
components: Dict[str, Dict[str, Any]]
@root_validator
def validate_config(cls, values):
"""Perform additional validation for settings with dependencies."""
pt = values.get("pretraining")
if pt and pt.objective.get("type") == "vectors" and not values["nlp"].vectors:
if pt and not isinstance(pt, ConfigSchemaPretrainEmpty):
if pt.objective.get("type") == "vectors" and not values["nlp"].vectors:
err = "Need nlp.vectors if pretraining.objective.type is vectors"
raise ValueError(err)
return values

View File

@ -3,10 +3,11 @@ from thinc.config import Config, ConfigValidationError
import spacy
from spacy.lang.en import English
from spacy.lang.de import German
from spacy.language import Language
from spacy.language import Language, DEFAULT_CONFIG
from spacy.util import registry, load_model_from_config
from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model
from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder
from spacy.schemas import ConfigSchema
from ..util import make_tempdir
@ -299,3 +300,16 @@ def test_config_interpolation():
nlp2 = English.from_config(interpolated)
assert nlp2.config["training"]["train_corpus"]["path"] == ""
assert nlp2.config["components"]["tagger"]["model"]["tok2vec"]["width"] == 342
def test_config_optional_sections():
config = Config().from_str(nlp_config_string)
config = DEFAULT_CONFIG.merge(config)
assert "pretraining" not in config
filled = registry.fill_config(config, schema=ConfigSchema, validate=False)
# Make sure that optional "pretraining" block doesn't default to None,
# which would (rightly) cause error because it'd result in a top-level
# key that's not a section (dict). Note that the following roundtrip is
# also how Config.interpolate works under the hood.
new_config = Config().from_str(filled.to_str())
assert new_config["pretraining"] == {}