Merge branch 'pr/1024' into develop

This commit is contained in:
ines 2017-05-08 01:12:44 +02:00
commit 0ee2a22b67
30 changed files with 2961941 additions and 35 deletions

View File

@ -4,19 +4,14 @@ from __future__ import unicode_literals
from . import util
from .util import prints
from .deprecated import resolve_model_name
import importlib
from .cli.info import info
from .glossary import explain
from . import en, de, zh, es, it, hu, fr, pt, nl, sv, fi, bn, he, nb, ja
_languages = (en.English, de.German, es.Spanish, pt.Portuguese, fr.French,
it.Italian, hu.Hungarian, zh.Chinese, nl.Dutch, sv.Swedish,
fi.Finnish, bn.Bengali, he.Hebrew, nb.Norwegian, ja.Japanese)
for _lang in _languages:
util.set_lang_class(_lang.lang, _lang)
_languages_name = set(["en", "de", "es", "pt", "fr",
"it", "hu", "zh", "nl", "sv",
"fi", "bn", "he", "nb", "ja"])
def load(name, **overrides):
@ -35,7 +30,8 @@ def load(name, **overrides):
model_name = ''
meta = util.parse_package_meta(data_path, model_name, require=False)
lang = meta['lang'] if meta and 'lang' in meta else name
cls = util.get_lang_class(lang)
module = importlib.import_module("."+lang, "spacy")
cls = module.EXPORT
overrides['meta'] = meta
overrides['path'] = model_path
return cls(**overrides)

View File

@ -22,3 +22,5 @@ class Bengali(Language):
prefixes = tuple(TOKENIZER_PREFIXES)
suffixes = tuple(TOKENIZER_SUFFIXES)
infixes = tuple(TOKENIZER_INFIXES)
EXPORT = Bengali

View File

@ -7,6 +7,8 @@ from ..language import Language
from ..attrs import LANG
from .language_data import *
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class German(Language):
@ -20,3 +22,10 @@ class German(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
tag_map = TAG_MAP
stop_words = STOP_WORDS
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOK_UP)
EXPORT = German

354974
spacy/de/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -32,3 +32,6 @@ class English(Language):
# Special-case hack for loading the GloVe vectors, to support <1.0
overrides = fix_glove_vectors_loading(overrides)
Language.__init__(self, **overrides)
EXPORT = English

41588
spacy/en/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -7,7 +7,8 @@ from ..language import Language
from ..attrs import LANG
from .language_data import *
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class Spanish(Language):
lang = 'es'
@ -19,3 +20,7 @@ class Spanish(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
tag_map = TAG_MAP
stop_words = STOP_WORDS
EXPORT = Spanish

491552
spacy/es/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -15,3 +15,6 @@ class Finnish(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
EXPORT = Finnish

View File

@ -6,7 +6,8 @@ from ..attrs import LANG
from .language_data import *
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class FrenchDefaults(BaseDefaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
@ -22,8 +23,15 @@ class FrenchDefaults(BaseDefaults):
cls.tokenizer_exceptions = get_tokenizer_exceptions()
return super(FrenchDefaults, cls).create_tokenizer(nlp)
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOK_UP)
class French(Language):
lang = 'fr'
Defaults = FrenchDefaults
EXPORT = French

217121
spacy/fr/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -117,24 +117,28 @@ def get_tokenizer_exceptions():
for verb, verb_lemma in (("a", "avoir"), ("est", "être"),
("semble", "sembler"), ("indique", "indiquer"),
("moque", "moquer"), ("passe", "passer")):
for orth in [verb,verb.title()]:
for pronoun in ("elle", "il", "on"):
token = "{}-t-{}".format(verb, pronoun)
token = "{}-t-{}".format(orth, pronoun)
VERBS[token] = [
{LEMMA: verb_lemma, ORTH: verb},
{LEMMA: verb_lemma, ORTH: orth, TAG: "VERB"},
{LEMMA: "t", ORTH: "-t"},
{LEMMA: pronoun, ORTH: "-" + pronoun}
]
VERBS['est-ce'] = [
{LEMMA: 'être', ORTH: "est"},
for verb, verb_lemma in [("est","être")]:
for orth in [verb,verb.title()]:
token = "{}-ce".format(orth)
VERBS[token] = [
{LEMMA: verb_lemma, ORTH: orth, TAG: "VERB"},
{LEMMA: 'ce', ORTH: '-ce'}
]
for pre, pre_lemma in (("qu'", "que"), ("Qu'", "Que"), ("n'", "ne"),
("N'", "Ne")):
VERBS['{}est-ce'.format(pre)] = [
{LEMMA: pre_lemma, ORTH: pre},
{LEMMA: 'être', ORTH: "est"},
for pre, pre_lemma in (("qu'", "que"), ("n'", "ne")):
for orth in [pre,pre.title()]:
VERBS['{}est-ce'.format(orth)] = [
{LEMMA: pre_lemma, ORTH: orth, TAG: "ADV"},
{LEMMA: 'être', ORTH: "est", TAG: "VERB"},
{LEMMA: 'ce', ORTH: '-ce'}
]

View File

@ -16,3 +16,6 @@ class Hebrew(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
EXPORT = Hebrew

View File

@ -5,7 +5,8 @@ from .tokenizer_exceptions import TOKEN_MATCH
from .language_data import *
from ..attrs import LANG
from ..language import Language
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class Hungarian(Language):
lang = 'hu'
@ -24,3 +25,10 @@ class Hungarian(Language):
stop_words = set(STOP_WORDS)
token_match = TOKEN_MATCH
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOK_UP)
EXPORT = Hungarian

37736
spacy/hu/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -5,7 +5,8 @@ from ..language import Language
from ..attrs import LANG
from .language_data import *
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class Italian(Language):
lang = 'it'
@ -16,3 +17,11 @@ class Italian(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOK_UP)
EXPORT = Italian

333687
spacy/it/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -21,3 +21,5 @@ class Japanese(Language):
"https://github.com/mocobeta/janome")
words = [x.surface for x in Tokenizer().tokenize(text)]
return Doc(self.vocab, words=words, spaces=[False]*len(words))
EXPORT = Japanese

View File

@ -22,5 +22,6 @@ TAG_MAP = {
"CCONJ": {POS: CCONJ}, # U20
"ADJ": {POS: ADJ},
"VERB": {POS: VERB},
"PART": {POS: PART}
"PART": {POS: PART},
"SP": {POS: SPACE}
}

19
spacy/lemmatizerlookup.py Normal file
View File

@ -0,0 +1,19 @@
# coding: utf8
from __future__ import unicode_literals
from .lemmatizer import Lemmatizer
class Lemmatizer(Lemmatizer):
@classmethod
def load(cls, path, lookup):
return cls(lookup or {})
def __init__(self, lookup):
self.lookup = lookup
def __call__(self, string, univ_pos, morphology=None):
try:
return set([self.lookup[string]])
except:
return set([string])

View File

@ -23,3 +23,6 @@ class Norwegian(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
#tag_map = TAG_MAP
stop_words = STOP_WORDS
EXPORT = Norwegian

View File

@ -15,3 +15,6 @@ class Dutch(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
EXPORT = Dutch

View File

@ -5,7 +5,8 @@ from ..language import Language
from ..attrs import LANG
from .language_data import *
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class Portuguese(Language):
lang = 'pt'
@ -16,3 +17,10 @@ class Portuguese(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOK_UP)
EXPORT = Portuguese

824772
spacy/pt/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,8 @@ from __future__ import unicode_literals, print_function
from ..language import Language
from ..attrs import LANG
from .language_data import *
from ..lemmatizerlookup import Lemmatizer
from .lemmatization import LOOK_UP
class Swedish(Language):
lang = 'sv'
@ -15,3 +16,10 @@ class Swedish(Language):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOK_UP)
EXPORT = Swedish

660313
spacy/sv/lemmatization.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -129,6 +129,10 @@ def EN():
def DE():
return German()
@pytest.fixture(scope="session")
def FR():
return French()
def pytest_addoption(parser):
parser.addoption("--models", action="store_true",

View File

@ -38,3 +38,28 @@ def test_tokenizer_handles_exc_in_text_2(fr_tokenizer):
assert len(tokens) == 11
assert tokens[1].text == "après-midi"
assert tokens[9].text == "italo-mexicain"
def test_tokenizer_handles_title(fr_tokenizer):
text = "N'est-ce pas génial?"
tokens = fr_tokenizer(text)
assert len(tokens) == 6
assert tokens[0].text == "N'"
assert tokens[0].lemma_ == "ne"
assert tokens[1].text == "est"
assert tokens[1].lemma_ == "être"
assert tokens[2].text == "-ce"
assert tokens[2].lemma_ == "ce"
def test_tokenizer_handles_title_2(fr_tokenizer):
text = "Est-ce pas génial?"
tokens = fr_tokenizer(text)
assert len(tokens) == 6
assert tokens[0].text == "Est"
assert tokens[0].lemma_ == "être"
def test_tokenizer_handles_title_2(fr_tokenizer):
text = "Qu'est-ce que tu fais?"
tokens = fr_tokenizer(text)
assert len(tokens) == 7
assert tokens[0].text == "Qu'"
assert tokens[0].lemma_ == "que"

View File

@ -0,0 +1,37 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
@pytest.mark.models
def test_lemmatizer_verb(FR):
text = "Qu'est-ce que tu fais?"
tokens = FR(text)
assert tokens[0].lemma_ == "que"
assert tokens[1].lemma_ == "être"
assert tokens[5].lemma_ == "faire"
@pytest.mark.models
@pytest.mark.xfail(reason="sont tagged as AUX")
def test_lemmatizer_noun_verb_2(FR):
text = "Les abaissements de température sont gênants."
tokens = FR(text)
assert tokens[4].lemma_ == "être"
@pytest.mark.models
@pytest.mark.xfail(reason="Costaricienne TAG is PROPN instead of NOUN and spacy don't lemmatize PROPN")
def test_lemmatizer_noun(FR):
text = "il y a des Costaricienne."
tokens = FR(text)
assert tokens[4].lemma_ == "Costaricain"
@pytest.mark.models
def test_lemmatizer_noun_2(FR):
text = "Les abaissements de température sont gênants."
tokens = FR(text)
assert tokens[1].lemma_ == "abaissement"
assert tokens[5].lemma_ == "gênant"

View File

@ -9,3 +9,6 @@ class Chinese(Language):
import jieba
words = list(jieba.cut(text, cut_all=True))
return Doc(self.vocab, words=words, spaces=[False]*len(words))
EXPORT = Chinese