mirror of
https://github.com/explosion/spaCy.git
synced 2025-09-19 10:32:40 +03:00
add basic tests for debugging
This commit is contained in:
parent
391b512afd
commit
0f5c586e2f
|
@ -59,6 +59,7 @@ def tuplify(layer1: Model, layer2: Model, *layers) -> Model:
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# TODO replace this with thinc version once PR is in
|
||||||
def tuplify_forward(model, X, is_train):
|
def tuplify_forward(model, X, is_train):
|
||||||
Ys = []
|
Ys = []
|
||||||
backprops = []
|
backprops = []
|
||||||
|
@ -77,16 +78,27 @@ def tuplify_forward(model, X, is_train):
|
||||||
return tuple(Ys), backprop_tuplify
|
return tuple(Ys), backprop_tuplify
|
||||||
|
|
||||||
|
|
||||||
# TODO make more robust, see chain
|
# TODO replace this with thinc version once PR is in
|
||||||
def tuplify_init(model, X, Y) -> Model:
|
def tuplify_init(model, X, Y) -> Model:
|
||||||
if X is None and Y is None:
|
if X is None and Y is None:
|
||||||
for layer in model.layers:
|
for layer in model.layers:
|
||||||
layer.initialize()
|
layer.initialize()
|
||||||
|
if model.layers[0].has_dim("nI"):
|
||||||
|
model.set_dim("nI", model.layers[0].get_dim("nI"))
|
||||||
return model
|
return model
|
||||||
|
|
||||||
for layer in model.layers:
|
# Try to set nO on each layer, where available.
|
||||||
|
# All layers have the same input, and the output should map directly from the
|
||||||
|
# given Y, if provided.
|
||||||
|
for ii, layer in enumerate(model.layers):
|
||||||
|
if Y is not None and layer.has_dim("nO") is None:
|
||||||
|
layer.initialize(X=X, Y=Y[ii])
|
||||||
|
else:
|
||||||
layer.initialize(X=X)
|
layer.initialize(X=X)
|
||||||
|
|
||||||
|
if model.layers[0].has_dim("nI"):
|
||||||
|
model.set_dim("nI", model.layers[0].get_dim("nI"))
|
||||||
|
# this model can have an input dimension, but can't have an output dimension
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
|
110
spacy/tests/pipeline/test_coref.py
Normal file
110
spacy/tests/pipeline/test_coref.py
Normal file
|
@ -0,0 +1,110 @@
|
||||||
|
import pytest
|
||||||
|
from spacy import util
|
||||||
|
from spacy.training import Example
|
||||||
|
from spacy.lang.en import English
|
||||||
|
from spacy.tests.util import make_tempdir
|
||||||
|
from spacy.pipeline.coref import DEFAULT_CLUSTERS_PREFIX
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
TRAIN_DATA = [
|
||||||
|
(
|
||||||
|
"Yes, I noticed that many friends around me received it. It seems that almost everyone received this SMS.",
|
||||||
|
{
|
||||||
|
"spans": {
|
||||||
|
f"{DEFAULT_CLUSTERS_PREFIX}_1": [
|
||||||
|
(5, 6, "MENTION"), # I
|
||||||
|
(40, 42, "MENTION"), # me
|
||||||
|
|
||||||
|
],
|
||||||
|
f"{DEFAULT_CLUSTERS_PREFIX}_2": [
|
||||||
|
(52, 54, "MENTION"), # it
|
||||||
|
(95, 103, "MENTION"), # this SMS
|
||||||
|
]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def nlp():
|
||||||
|
return English()
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_pipe(nlp):
|
||||||
|
nlp.add_pipe("coref")
|
||||||
|
assert nlp.pipe_names == ["coref"]
|
||||||
|
|
||||||
|
|
||||||
|
def test_not_initialized(nlp):
|
||||||
|
nlp.add_pipe("coref")
|
||||||
|
text = "She gave me her pen."
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
nlp(text)
|
||||||
|
|
||||||
|
|
||||||
|
def test_initialized(nlp):
|
||||||
|
nlp.add_pipe("coref")
|
||||||
|
nlp.initialize()
|
||||||
|
assert nlp.pipe_names == ["coref"]
|
||||||
|
text = "She gave me her pen."
|
||||||
|
doc = nlp(text)
|
||||||
|
# The results of this are weird & non-deterministic
|
||||||
|
print(doc.spans)
|
||||||
|
|
||||||
|
|
||||||
|
def test_initialized_2(nlp):
|
||||||
|
nlp.add_pipe("coref")
|
||||||
|
nlp.initialize()
|
||||||
|
assert nlp.pipe_names == ["coref"]
|
||||||
|
text = "She gave me her pen."
|
||||||
|
doc = nlp(text)
|
||||||
|
# TODO: THIS CRASHES
|
||||||
|
print(nlp(text).spans)
|
||||||
|
|
||||||
|
|
||||||
|
def test_overfitting_IO(nlp):
|
||||||
|
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
|
||||||
|
|
||||||
|
nlp.add_pipe("coref")
|
||||||
|
optimizer = nlp.initialize()
|
||||||
|
test_text = TRAIN_DATA[0][0]
|
||||||
|
doc = nlp(test_text)
|
||||||
|
print("BEFORE", doc.spans)
|
||||||
|
|
||||||
|
for i in range(5):
|
||||||
|
losses = {}
|
||||||
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
doc = nlp(test_text)
|
||||||
|
print(i, doc.spans)
|
||||||
|
print(losses["coref"]) # < 0.001
|
||||||
|
|
||||||
|
# test the trained model
|
||||||
|
doc = nlp(test_text)
|
||||||
|
print("AFTER", doc.spans)
|
||||||
|
|
||||||
|
# Also test the results are still the same after IO
|
||||||
|
with make_tempdir() as tmp_dir:
|
||||||
|
nlp.to_disk(tmp_dir)
|
||||||
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
|
doc2 = nlp2(test_text)
|
||||||
|
print("doc2", doc2.spans)
|
||||||
|
|
||||||
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
||||||
|
texts = [
|
||||||
|
test_text,
|
||||||
|
"I noticed many friends around me",
|
||||||
|
"They received it. They received the SMS.",
|
||||||
|
]
|
||||||
|
batch_deps_1 = [doc.spans for doc in nlp.pipe(texts)]
|
||||||
|
print(batch_deps_1)
|
||||||
|
batch_deps_2 = [doc.spans for doc in nlp.pipe(texts)]
|
||||||
|
print(batch_deps_2)
|
||||||
|
no_batch_deps = [doc.spans for doc in [nlp(text) for text in texts]]
|
||||||
|
print(no_batch_deps)
|
||||||
|
# assert_equal(batch_deps_1, batch_deps_2)
|
||||||
|
# assert_equal(batch_deps_1, no_batch_deps)
|
Loading…
Reference in New Issue
Block a user