mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Merge pull request #13299 from danieldk/copy/master
Sync main with latests changes from master (v3)
This commit is contained in:
		
						commit
						1052cba9f3
					
				
							
								
								
									
										2
									
								
								.github/workflows/gputests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/gputests.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -9,7 +9,7 @@ jobs:
 | 
			
		|||
    strategy:
 | 
			
		||||
      fail-fast: false
 | 
			
		||||
      matrix:
 | 
			
		||||
        branch: [master, v4]
 | 
			
		||||
        branch: [master, main]
 | 
			
		||||
    if: github.repository_owner == 'explosion'
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										2
									
								
								.github/workflows/slowtests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/slowtests.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -9,7 +9,7 @@ jobs:
 | 
			
		|||
    strategy:
 | 
			
		||||
      fail-fast: false
 | 
			
		||||
      matrix:
 | 
			
		||||
        branch: [master, v4]
 | 
			
		||||
        branch: [master, main]
 | 
			
		||||
    if: github.repository_owner == 'explosion'
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -452,10 +452,9 @@ and plugins in spaCy v3.0, and we can't wait to see what you build with it!
 | 
			
		|||
  spaCy website. If you're sharing your project on Twitter, feel free to tag
 | 
			
		||||
  [@spacy_io](https://twitter.com/spacy_io) so we can check it out.
 | 
			
		||||
 | 
			
		||||
- Once your extension is published, you can open an issue on the
 | 
			
		||||
  [issue tracker](https://github.com/explosion/spacy/issues) to suggest it for the
 | 
			
		||||
  [resources directory](https://spacy.io/usage/resources#extensions) on the
 | 
			
		||||
  website.
 | 
			
		||||
- Once your extension is published, you can open a
 | 
			
		||||
  [PR](https://github.com/explosion/spaCy/pulls) to suggest it for the
 | 
			
		||||
  [Universe](https://spacy.io/universe) page.
 | 
			
		||||
 | 
			
		||||
📖 **For more tips and best practices, see the [checklist for developing spaCy extensions](https://spacy.io/usage/processing-pipelines#extensions).**
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,7 +13,7 @@ from .. import util
 | 
			
		|||
from ..language import Language
 | 
			
		||||
from ..tokens import Doc
 | 
			
		||||
from ..training import Corpus
 | 
			
		||||
from ._util import Arg, Opt, benchmark_cli, setup_gpu
 | 
			
		||||
from ._util import Arg, Opt, benchmark_cli, import_code, setup_gpu
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@benchmark_cli.command(
 | 
			
		||||
| 
						 | 
				
			
			@ -30,12 +30,14 @@ def benchmark_speed_cli(
 | 
			
		|||
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | 
			
		||||
    n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,),
 | 
			
		||||
    warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"),
 | 
			
		||||
    code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
			
		||||
    # fmt: on
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark
 | 
			
		||||
    data in the binary .spacy format.
 | 
			
		||||
    """
 | 
			
		||||
    import_code(code_path)
 | 
			
		||||
    setup_gpu(use_gpu=use_gpu, silent=False)
 | 
			
		||||
 | 
			
		||||
    nlp = util.load_model(model)
 | 
			
		||||
| 
						 | 
				
			
			@ -171,5 +173,5 @@ def print_outliers(sample: numpy.ndarray):
 | 
			
		|||
def warmup(
 | 
			
		||||
    nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int]
 | 
			
		||||
) -> numpy.ndarray:
 | 
			
		||||
    docs = warmup_epochs * docs
 | 
			
		||||
    docs = [doc.copy() for doc in docs * warmup_epochs]
 | 
			
		||||
    return annotate(nlp, docs, batch_size)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1830,6 +1830,7 @@ class Language:
 | 
			
		|||
            # is done, so that they can exit gracefully.
 | 
			
		||||
            for q in texts_q:
 | 
			
		||||
                q.put(_WORK_DONE_SENTINEL)
 | 
			
		||||
                q.close()
 | 
			
		||||
 | 
			
		||||
            # Otherwise, we are stopping because the error handler raised an
 | 
			
		||||
            # exception. The sentinel will be last to go out of the queue.
 | 
			
		||||
| 
						 | 
				
			
			@ -2464,7 +2465,8 @@ def _apply_pipes(
 | 
			
		|||
 | 
			
		||||
            # Stop working if we encounter the end-of-work sentinel.
 | 
			
		||||
            if isinstance(texts_with_ctx, _WorkDoneSentinel):
 | 
			
		||||
                return
 | 
			
		||||
                sender.close()
 | 
			
		||||
                receiver.close()
 | 
			
		||||
 | 
			
		||||
            docs = (
 | 
			
		||||
                ensure_doc(doc_like, context) for doc_like, context in texts_with_ctx
 | 
			
		||||
| 
						 | 
				
			
			@ -2488,7 +2490,8 @@ def _apply_pipes(
 | 
			
		|||
            # Parent has closed the pipe prematurely. This happens when a
 | 
			
		||||
            # worker encounters an error and the error handler is set to
 | 
			
		||||
            # stop processing.
 | 
			
		||||
            return
 | 
			
		||||
            sender.close()
 | 
			
		||||
            receiver.close()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class _Sender:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -15,7 +15,12 @@ def doc_w_attrs(en_tokenizer):
 | 
			
		|||
    Token.set_extension("_test_token", default="t0")
 | 
			
		||||
    doc[1]._._test_token = "t1"
 | 
			
		||||
 | 
			
		||||
    return doc
 | 
			
		||||
    yield doc
 | 
			
		||||
 | 
			
		||||
    Doc.remove_extension("_test_attr")
 | 
			
		||||
    Doc.remove_extension("_test_prop")
 | 
			
		||||
    Doc.remove_extension("_test_method")
 | 
			
		||||
    Token.remove_extension("_test_token")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_serialize_ext_attrs_from_bytes(doc_w_attrs):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1267,20 +1267,21 @@ the [binary `.spacy` format](/api/data-formats#binary-training). The pipeline is
 | 
			
		|||
warmed up before any measurements are taken.
 | 
			
		||||
 | 
			
		||||
```cli
 | 
			
		||||
$ python -m spacy benchmark speed [model] [data_path] [--batch_size] [--no-shuffle] [--gpu-id] [--batches] [--warmup]
 | 
			
		||||
$ python -m spacy benchmark speed [model] [data_path] [--code] [--batch_size] [--no-shuffle] [--gpu-id] [--batches] [--warmup]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
| Name                 | Description                                                                                              |
 | 
			
		||||
| -------------------- | -------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `model`              | Pipeline to benchmark the speed of. Can be a package or a path to a data directory. ~~str (positional)~~ |
 | 
			
		||||
| `data_path`          | Location of benchmark data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
 | 
			
		||||
| `--batch-size`, `-b` | Set the batch size. If not set, the pipeline's batch size is used. ~~Optional[int] \(option)~~           |
 | 
			
		||||
| `--no-shuffle`       | Do not shuffle documents in the benchmark data. ~~bool (flag)~~                                          |
 | 
			
		||||
| `--gpu-id`, `-g`     | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~                                           |
 | 
			
		||||
| `--batches`          | Number of batches to benchmark on. Defaults to `50`. ~~Optional[int] \(option)~~                         |
 | 
			
		||||
| `--warmup`, `-w`     | Iterations over the benchmark data for warmup. Defaults to `3` ~~Optional[int] \(option)~~               |
 | 
			
		||||
| `--help`, `-h`       | Show help message and available arguments. ~~bool (flag)~~                                               |
 | 
			
		||||
| **PRINTS**           | Pipeline speed in words per second with a 95% confidence interval.                                       |
 | 
			
		||||
| Name                 | Description                                                                                                                                                                          |
 | 
			
		||||
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
			
		||||
| `model`              | Pipeline to benchmark the speed of. Can be a package or a path to a data directory. ~~str (positional)~~                                                                             |
 | 
			
		||||
| `data_path`          | Location of benchmark data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~                                                                             |
 | 
			
		||||
| `--code`, `-c`       | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
 | 
			
		||||
| `--batch-size`, `-b` | Set the batch size. If not set, the pipeline's batch size is used. ~~Optional[int] \(option)~~                                                                                       |
 | 
			
		||||
| `--no-shuffle`       | Do not shuffle documents in the benchmark data. ~~bool (flag)~~                                                                                                                      |
 | 
			
		||||
| `--gpu-id`, `-g`     | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~                                                                                                                       |
 | 
			
		||||
| `--batches`          | Number of batches to benchmark on. Defaults to `50`. ~~Optional[int] \(option)~~                                                                                                     |
 | 
			
		||||
| `--warmup`, `-w`     | Iterations over the benchmark data for warmup. Defaults to `3` ~~Optional[int] \(option)~~                                                                                           |
 | 
			
		||||
| `--help`, `-h`       | Show help message and available arguments. ~~bool (flag)~~                                                                                                                           |
 | 
			
		||||
| **PRINTS**           | Pipeline speed in words per second with a 95% confidence interval.                                                                                                                   |
 | 
			
		||||
 | 
			
		||||
## apply {id="apply", version="3.5", tag="command"}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1295,6 +1296,9 @@ input formats are:
 | 
			
		|||
 | 
			
		||||
When a directory is provided it is traversed recursively to collect all files.
 | 
			
		||||
 | 
			
		||||
When loading a .spacy file, any potential annotations stored on the `Doc` that are not overwritten by the pipeline will be preserved.
 | 
			
		||||
If you want to evaluate the pipeline on raw text only, make sure that the .spacy file does not contain any annotations.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
$ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key] [--force-overwrite] [--gpu-id] [--batch-size] [--n-process]
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1507,7 +1507,7 @@ These models all take the same parameters:
 | 
			
		|||
> ```ini
 | 
			
		||||
> [components.llm.model]
 | 
			
		||||
> @llm_models = "spacy.Llama2.v1"
 | 
			
		||||
> name = "llama2-7b-hf"
 | 
			
		||||
> name = "Llama-2-7b-hf"
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
Currently, these models are provided as part of the core library:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,7 +13,7 @@ between `Doc` objects.
 | 
			
		|||
<Infobox variant="warning">
 | 
			
		||||
 | 
			
		||||
Note that a `Vocab` instance is not static. It increases in size as texts with
 | 
			
		||||
new tokens are processed.
 | 
			
		||||
new tokens are processed. Some models may have an empty vocab at initialization.
 | 
			
		||||
 | 
			
		||||
</Infobox>
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -93,6 +93,7 @@ given string, you need to look it up in
 | 
			
		|||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> nlp("I'm eating an apple")
 | 
			
		||||
> apple = nlp.vocab.strings["apple"]
 | 
			
		||||
> oov = nlp.vocab.strings["dskfodkfos"]
 | 
			
		||||
> assert apple in nlp.vocab
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user