Make deep_learning_keras example use sentences

This commit is contained in:
Matthew Honnibal 2016-10-23 23:17:41 +02:00
parent e80944276f
commit 105aaadc07

View File

@ -16,18 +16,18 @@ import spacy
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp):
def load(cls, path, nlp, max_length=100):
with (path / 'config.json').open() as file_:
model = model_from_json(file_.read())
with (path / 'model').open('rb') as file_:
lstm_weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + lstm_weights)
return cls(model)
return cls(model, max_length=max_length)
def __init__(self, model):
def __init__(self, model, max_length=100):
self._model = model
self.max_length = max_length
def __call__(self, doc):
X = get_features([doc], self.max_length)
@ -36,10 +36,16 @@ class SentimentAnalyser(object):
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in cytoolz.partition_all(batch_size, docs):
Xs = get_features(minibatch, self.max_length)
minibatch = list(minibatch)
sentences = []
for doc in minibatch:
sentences.extend(doc.sents)
Xs = get_features(sentences, self.max_length)
ys = self._model.predict(Xs)
for i, doc in enumerate(minibatch):
doc.user_data['sentiment'] = ys[i]
for sent, label in zip(sentences, ys):
sent.doc.sentiment += label - 0.5
for doc in minibatch:
yield doc
def set_sentiment(self, doc, y):
doc.sentiment = float(y[0])
@ -48,6 +54,16 @@ class SentimentAnalyser(object):
# doc.user_data['my_data'] = y
def get_labelled_sentences(docs, doc_labels):
labels = []
sentences = []
for doc, y in zip(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, numpy.asarray(labels, dtype='int32')
def get_features(docs, max_length):
docs = list(docs)
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
@ -63,12 +79,21 @@ def get_features(docs, max_length):
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
by_sentence=True):
print("Loading spaCy")
nlp = spacy.load('en', entity=False)
embeddings = get_embeddings(nlp.vocab)
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
train_X = get_features(nlp.pipe(train_texts), lstm_shape['max_length'])
dev_X = get_features(nlp.pipe(dev_texts), lstm_shape['max_length'])
print("Parsing texts...")
train_docs = list(nlp.pipe(train_texts, batch_size=5000, n_threads=3))
dev_docs = list(nlp.pipe(dev_texts, batch_size=5000, n_threads=3))
if by_sentence:
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
train_X = get_features(train_docs, lstm_shape['max_length'])
dev_X = get_features(dev_docs, lstm_shape['max_length'])
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
nb_epoch=nb_epoch, batch_size=batch_size)
return model
@ -86,7 +111,7 @@ def compile_lstm(embeddings, shape, settings):
mask_zero=True
)
)
model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2)))
model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2, bias=False)))
model.add(Dropout(settings['dropout']))
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
model.add(Dropout(settings['dropout']))
@ -105,25 +130,23 @@ def get_embeddings(vocab):
return vectors
def demonstrate_runtime(model_dir, texts):
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
Here we return a dictionary mapping entities to the average sentiment of the
documents they occurred in.
'''
def evaluate(model_dir, texts, labels, max_length=100):
def create_pipeline(nlp):
'''
This could be a lambda, but named functions are easier to read in Python.
'''
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
max_length=max_length)]
nlp = spacy.load('en', create_pipeline=create_pipeline)
nlp = spacy.load('en')
nlp.pipeline = create_pipeline(nlp)
entity_sentiments = collections.Counter(float)
correct = 0
i = 0
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
for ent in doc.ents:
entity_sentiments[ent.text] += doc.sentiment
return entity_sentiments
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
i += 1
return float(correct) / i
def read_data(data_dir, limit=0):
@ -162,10 +185,12 @@ def main(model_dir, train_dir, dev_dir,
dev_dir = pathlib.Path(dev_dir)
if is_runtime:
dev_texts, dev_labels = read_data(dev_dir)
demonstrate_runtime(model_dir, dev_texts)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
dev_texts, dev_labels = read_data(dev_dir)
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
train_labels = numpy.asarray(train_labels, dtype='int32')
dev_labels = numpy.asarray(dev_labels, dtype='int32')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
@ -175,7 +200,9 @@ def main(model_dir, train_dir, dev_dir,
nb_epoch=nb_epoch, batch_size=batch_size)
weights = lstm.get_weights()
with (model_dir / 'model').open('wb') as file_:
pickle.dump(file_, weights[1:])
pickle.dump(weights[1:], file_)
with (model_dir / 'config.json').open('wb') as file_:
file_.write(lstm.to_json())
if __name__ == '__main__':