mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Get pre-computed version working
This commit is contained in:
parent
35458987e8
commit
10682d35ab
|
@ -144,7 +144,6 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||||
docs = list(Xs)
|
docs = list(Xs)
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
encoder(doc)
|
encoder(doc)
|
||||||
parser.begin_training(docs, ys)
|
|
||||||
nn_loss = [0.]
|
nn_loss = [0.]
|
||||||
def track_progress():
|
def track_progress():
|
||||||
scorer = score_model(vocab, encoder, tagger, parser, dev_Xs, dev_ys)
|
scorer = score_model(vocab, encoder, tagger, parser, dev_Xs, dev_ys)
|
||||||
|
@ -153,7 +152,7 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||||
nn_loss.append(0.)
|
nn_loss.append(0.)
|
||||||
trainer.each_epoch.append(track_progress)
|
trainer.each_epoch.append(track_progress)
|
||||||
trainer.batch_size = 12
|
trainer.batch_size = 12
|
||||||
trainer.nb_epoch = 2
|
trainer.nb_epoch = 20
|
||||||
for docs, golds in trainer.iterate(Xs, ys, progress_bar=False):
|
for docs, golds in trainer.iterate(Xs, ys, progress_bar=False):
|
||||||
docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs]
|
docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs]
|
||||||
tokvecs, upd_tokvecs = encoder.begin_update(docs)
|
tokvecs, upd_tokvecs = encoder.begin_update(docs)
|
||||||
|
@ -161,9 +160,9 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||||
doc.tensor = tokvec
|
doc.tensor = tokvec
|
||||||
for doc, gold in zip(docs, golds):
|
for doc, gold in zip(docs, golds):
|
||||||
tagger.update(doc, gold)
|
tagger.update(doc, gold)
|
||||||
d_tokvecs, loss = parser.update(docs, golds, sgd=optimizer)
|
d_tokvecs = parser.update(docs, golds, sgd=optimizer)
|
||||||
upd_tokvecs(d_tokvecs, sgd=optimizer)
|
upd_tokvecs(d_tokvecs, sgd=optimizer)
|
||||||
nn_loss[-1] += loss
|
#nn_loss[-1] += loss
|
||||||
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
|
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
|
||||||
#nlp.end_training(model_dir)
|
#nlp.end_training(model_dir)
|
||||||
#scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
#scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
||||||
|
@ -173,7 +172,7 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import cProfile
|
import cProfile
|
||||||
import pstats
|
import pstats
|
||||||
if 0:
|
if 1:
|
||||||
plac.call(main)
|
plac.call(main)
|
||||||
else:
|
else:
|
||||||
cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
|
cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
|
||||||
|
|
85
spacy/_ml.py
85
spacy/_ml.py
|
@ -51,47 +51,6 @@ def doc2feats(cols):
|
||||||
model = layerize(forward)
|
model = layerize(forward)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def build_feature_precomputer(model, feat_maps):
|
|
||||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
|
||||||
|
|
||||||
This is used for the parser, where we want to take a batch of documents,
|
|
||||||
and compute vectors for each (token, position) pair. These vectors can then
|
|
||||||
be reused, especially for beam-search.
|
|
||||||
|
|
||||||
Let's say we're using 12 features for each state, e.g. word at start of
|
|
||||||
buffer, three words on stack, their children, etc. In the normal arc-eager
|
|
||||||
system, a document of length N is processed in 2*N states. This means we'll
|
|
||||||
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
|
||||||
N*12 vector computations. The saving for beam-search is much better:
|
|
||||||
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
|
||||||
so we can save the factor k. This also gives a nice CPU/GPU division:
|
|
||||||
we can do all our hard maths up front, packed into large multiplications,
|
|
||||||
and do the hard-to-program parsing on the CPU.
|
|
||||||
'''
|
|
||||||
def precompute(input_vectors):
|
|
||||||
cached, backprops = zip(*[lyr.begin_update(input_vectors)
|
|
||||||
for lyr in feat_maps)
|
|
||||||
def forward(batch_token_ids, drop=0.):
|
|
||||||
output = ops.allocate((batch_size, output_width))
|
|
||||||
# i: batch index
|
|
||||||
# j: position index (i.e. N0, S0, etc
|
|
||||||
# tok_i: Index of the token within its document
|
|
||||||
for i, token_ids in enumerate(batch_token_ids):
|
|
||||||
for j, tok_i in enumerate(token_ids):
|
|
||||||
output[i] += cached[j][tok_i]
|
|
||||||
def backward(d_vector, sgd=None):
|
|
||||||
d_inputs = ops.allocate((batch_size, n_feat, vec_width))
|
|
||||||
for i, token_ids in enumerate(batch_token_ids):
|
|
||||||
for j in range(len(token_ids)):
|
|
||||||
d_inputs[i][j] = backprops[j](d_vector, sgd)
|
|
||||||
# Return the IDs, so caller can associate to correct token
|
|
||||||
return (batch_token_ids, d_inputs)
|
|
||||||
return vector, backward
|
|
||||||
return chain(layerize(forward), model)
|
|
||||||
return precompute
|
|
||||||
|
|
||||||
|
|
||||||
def print_shape(prefix):
|
def print_shape(prefix):
|
||||||
def forward(X, drop=0.):
|
def forward(X, drop=0.):
|
||||||
return X, lambda dX, **kwargs: dX
|
return X, lambda dX, **kwargs: dX
|
||||||
|
@ -114,3 +73,47 @@ def flatten(seqs, drop=0.):
|
||||||
return d_X
|
return d_X
|
||||||
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs])
|
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs])
|
||||||
return X, finish_update
|
return X, finish_update
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#def build_feature_precomputer(model, feat_maps):
|
||||||
|
# '''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||||
|
#
|
||||||
|
# This is used for the parser, where we want to take a batch of documents,
|
||||||
|
# and compute vectors for each (token, position) pair. These vectors can then
|
||||||
|
# be reused, especially for beam-search.
|
||||||
|
#
|
||||||
|
# Let's say we're using 12 features for each state, e.g. word at start of
|
||||||
|
# buffer, three words on stack, their children, etc. In the normal arc-eager
|
||||||
|
# system, a document of length N is processed in 2*N states. This means we'll
|
||||||
|
# create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||||||
|
# N*12 vector computations. The saving for beam-search is much better:
|
||||||
|
# if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||||||
|
# so we can save the factor k. This also gives a nice CPU/GPU division:
|
||||||
|
# we can do all our hard maths up front, packed into large multiplications,
|
||||||
|
# and do the hard-to-program parsing on the CPU.
|
||||||
|
# '''
|
||||||
|
# def precompute(input_vectors):
|
||||||
|
# cached, backprops = zip(*[lyr.begin_update(input_vectors)
|
||||||
|
# for lyr in feat_maps)
|
||||||
|
# def forward(batch_token_ids, drop=0.):
|
||||||
|
# output = ops.allocate((batch_size, output_width))
|
||||||
|
# # i: batch index
|
||||||
|
# # j: position index (i.e. N0, S0, etc
|
||||||
|
# # tok_i: Index of the token within its document
|
||||||
|
# for i, token_ids in enumerate(batch_token_ids):
|
||||||
|
# for j, tok_i in enumerate(token_ids):
|
||||||
|
# output[i] += cached[j][tok_i]
|
||||||
|
# def backward(d_vector, sgd=None):
|
||||||
|
# d_inputs = ops.allocate((batch_size, n_feat, vec_width))
|
||||||
|
# for i, token_ids in enumerate(batch_token_ids):
|
||||||
|
# for j in range(len(token_ids)):
|
||||||
|
# d_inputs[i][j] = backprops[j](d_vector, sgd)
|
||||||
|
# # Return the IDs, so caller can associate to correct token
|
||||||
|
# return (batch_token_ids, d_inputs)
|
||||||
|
# return vector, backward
|
||||||
|
# return chain(layerize(forward), model)
|
||||||
|
# return precompute
|
||||||
|
#
|
||||||
|
#
|
||||||
|
|
||||||
|
|
|
@ -13,5 +13,6 @@ cdef class Parser:
|
||||||
cdef readonly object model
|
cdef readonly object model
|
||||||
cdef readonly TransitionSystem moves
|
cdef readonly TransitionSystem moves
|
||||||
cdef readonly object cfg
|
cdef readonly object cfg
|
||||||
|
cdef public object feature_maps
|
||||||
|
|
||||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||||
|
|
|
@ -28,10 +28,11 @@ from murmurhash.mrmr cimport hash64
|
||||||
from preshed.maps cimport MapStruct
|
from preshed.maps cimport MapStruct
|
||||||
from preshed.maps cimport map_get
|
from preshed.maps cimport map_get
|
||||||
|
|
||||||
from thinc.api import layerize
|
|
||||||
|
|
||||||
from numpy import exp
|
from thinc.api import layerize, chain
|
||||||
|
from thinc.neural import Model, Maxout
|
||||||
|
|
||||||
|
from .._ml import get_col
|
||||||
from . import _parse_features
|
from . import _parse_features
|
||||||
from ._parse_features cimport CONTEXT_SIZE
|
from ._parse_features cimport CONTEXT_SIZE
|
||||||
from ._parse_features cimport fill_context
|
from ._parse_features cimport fill_context
|
||||||
|
@ -46,8 +47,9 @@ from ..strings cimport StringStore
|
||||||
from ..gold cimport GoldParse
|
from ..gold cimport GoldParse
|
||||||
from ..attrs cimport TAG, DEP
|
from ..attrs cimport TAG, DEP
|
||||||
|
|
||||||
from .._ml import build_state2vec, build_model, precompute_hiddens
|
|
||||||
|
|
||||||
|
def get_templates(*args, **kwargs):
|
||||||
|
return []
|
||||||
|
|
||||||
USE_FTRL = True
|
USE_FTRL = True
|
||||||
DEBUG = False
|
DEBUG = False
|
||||||
|
@ -56,30 +58,39 @@ def set_debug(val):
|
||||||
DEBUG = val
|
DEBUG = val
|
||||||
|
|
||||||
|
|
||||||
def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, feat_maps, upper_model):
|
def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, feat_maps):
|
||||||
cdef int[:, :] is_valid_
|
cdef int[:, :] is_valid_
|
||||||
cdef float[:, :] costs_
|
cdef float[:, :] costs_
|
||||||
cdef int[:, :] token_ids
|
lengths = [len(t) for t in tokvecs]
|
||||||
|
tokvecs = upper_model.ops.flatten(tokvecs)
|
||||||
is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i')
|
is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i')
|
||||||
costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f')
|
costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f')
|
||||||
token_ids = upper_model.ops.allocate((len(tokvecs), StateClass.nr_context_tokens()),
|
token_ids = upper_model.ops.allocate((len(tokvecs), len(feat_maps)), dtype='i')
|
||||||
dtype='uint64')
|
|
||||||
cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps])
|
cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps])
|
||||||
is_valid_ = is_valid
|
is_valid_ = is_valid
|
||||||
costs_ = costs
|
costs_ = costs
|
||||||
|
|
||||||
def forward(states, drop=0.):
|
def forward(states_offsets, drop=0.):
|
||||||
nonlocal is_valid, costs, token_ids, moves
|
nonlocal is_valid, costs, token_ids, moves
|
||||||
|
states, offsets = states_offsets
|
||||||
is_valid = is_valid[:len(states)]
|
is_valid = is_valid[:len(states)]
|
||||||
costs = costs[:len(states)]
|
costs = costs[:len(states)]
|
||||||
token_ids = token_ids[:len(states)]
|
token_ids = token_ids[:len(states)]
|
||||||
is_valid = is_valid[:len(states)]
|
is_valid = is_valid[:len(states)]
|
||||||
cdef StateClass state
|
cdef StateClass state
|
||||||
for i, state in enumerate(states):
|
cdef int i
|
||||||
|
for i, (offset, state) in enumerate(zip(offsets, states)):
|
||||||
state.set_context_tokens(token_ids[i])
|
state.set_context_tokens(token_ids[i])
|
||||||
moves.set_valid(&is_valid_[i, 0], state.c)
|
moves.set_valid(&is_valid_[i, 0], state.c)
|
||||||
|
adjusted_ids = token_ids.copy()
|
||||||
features = cached[token_ids].sum(axis=1)
|
for i, offset in enumerate(offsets):
|
||||||
|
adjusted_ids[i] *= token_ids[i] >= 0
|
||||||
|
adjusted_ids[i] += offset
|
||||||
|
features = upper_model.ops.allocate((len(states), 64), dtype='f')
|
||||||
|
for i in range(len(states)):
|
||||||
|
for j, tok_i in enumerate(adjusted_ids[i]):
|
||||||
|
if tok_i >= 0:
|
||||||
|
features[i] += cached[j][tok_i]
|
||||||
|
|
||||||
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
||||||
softmaxed = upper_model.ops.softmax(scores)
|
softmaxed = upper_model.ops.softmax(scores)
|
||||||
|
@ -89,15 +100,16 @@ def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, feat_maps, upper
|
||||||
|
|
||||||
def backward(golds, sgd=None):
|
def backward(golds, sgd=None):
|
||||||
nonlocal costs_, is_valid_, moves
|
nonlocal costs_, is_valid_, moves
|
||||||
|
cdef int i
|
||||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||||
moves.set_costs(&is_valid_[i, 0], &costs_[i, 0],
|
moves.set_costs(&is_valid_[i, 0], &costs_[i, 0],
|
||||||
state, gold)
|
state, gold)
|
||||||
d_scores = scores.copy()
|
d_scores = scores.copy()
|
||||||
d_scores.fill(0)
|
d_scores.fill(0)
|
||||||
set_log_loss(upper_model.ops, d_scores,
|
set_log_loss(upper_model.ops, d_scores,
|
||||||
scores, is_valid_, costs_)
|
scores, is_valid, costs)
|
||||||
d_tokens = bp_scores(d_scores, sgd)
|
d_tokens = bp_scores(d_scores, sgd)
|
||||||
return d_tokens
|
return (token_ids, d_tokens)
|
||||||
|
|
||||||
return softmaxed, backward
|
return softmaxed, backward
|
||||||
|
|
||||||
|
@ -127,14 +139,18 @@ def transition_batch(TransitionSystem moves, states, scores):
|
||||||
|
|
||||||
|
|
||||||
def init_states(TransitionSystem moves, docs):
|
def init_states(TransitionSystem moves, docs):
|
||||||
states = []
|
|
||||||
cdef Doc doc
|
cdef Doc doc
|
||||||
cdef StateClass state
|
cdef StateClass state
|
||||||
|
offsets = []
|
||||||
|
states = []
|
||||||
|
offset = 0
|
||||||
for i, doc in enumerate(docs):
|
for i, doc in enumerate(docs):
|
||||||
state = StateClass.init(doc.c, doc.length)
|
state = StateClass.init(doc.c, doc.length)
|
||||||
moves.initialize_state(state.c)
|
moves.initialize_state(state.c)
|
||||||
states.append(state)
|
states.append(state)
|
||||||
return states
|
offsets.append(offset)
|
||||||
|
offset += len(doc)
|
||||||
|
return states, offsets
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser:
|
cdef class Parser:
|
||||||
|
@ -184,18 +200,22 @@ cdef class Parser:
|
||||||
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
||||||
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
||||||
if model is None:
|
if model is None:
|
||||||
model = self.build_model(**cfg)
|
self.model, self.feature_maps = self.build_model(**cfg)
|
||||||
self.model = model
|
else:
|
||||||
|
self.model, self.feature_maps = model
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
|
|
||||||
def __reduce__(self):
|
def __reduce__(self):
|
||||||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||||
|
|
||||||
def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
def build_model(self, width=64, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||||
self.model = build_model(width*2, 2, self.moves.n_moves)
|
|
||||||
|
model = chain(Maxout(width, width), Maxout(self.moves.n_moves, width))
|
||||||
# TODO
|
# TODO
|
||||||
self.feature_maps = [] #build_feature_maps(nr_context_tokens, width, nr_vector)
|
feature_maps = [Maxout(width, width)
|
||||||
|
for i in range(nr_context_tokens)]
|
||||||
|
return model, feature_maps
|
||||||
|
|
||||||
def __call__(self, Doc tokens):
|
def __call__(self, Doc tokens):
|
||||||
"""
|
"""
|
||||||
|
@ -245,19 +265,21 @@ cdef class Parser:
|
||||||
cdef Doc doc
|
cdef Doc doc
|
||||||
cdef StateClass state
|
cdef StateClass state
|
||||||
model = get_greedy_model_for_batch([d.tensor for d in docs],
|
model = get_greedy_model_for_batch([d.tensor for d in docs],
|
||||||
self.moves, self.model, self.feat_maps)
|
self.moves, self.model, self.feature_maps)
|
||||||
states = [StateClass.init(doc.c, doc.length) for doc in docs]
|
states, offsets = init_states(self.moves, docs)
|
||||||
todo = list(states)
|
all_states = list(states)
|
||||||
|
todo = list(zip(states, offsets))
|
||||||
while todo:
|
while todo:
|
||||||
scores = model(todo)
|
states, offsets = zip(*todo)
|
||||||
transition_batch(self.moves, todo, scores)
|
scores = model((states, offsets))
|
||||||
todo = [st for st in states if not st.is_final()]
|
transition_batch(self.moves, states, scores)
|
||||||
for state, doc in zip(states, docs):
|
todo = [st for st in todo if not st[0].py_is_final()]
|
||||||
|
for state, doc in zip(all_states, docs):
|
||||||
self.moves.finalize_state(state.c)
|
self.moves.finalize_state(state.c)
|
||||||
for i in range(doc.length):
|
for i in range(doc.length):
|
||||||
doc.c[i] = state.c._sent[i]
|
doc.c[i] = state.c._sent[i]
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
self.moves.finalize_parse(doc)
|
self.moves.finalize_doc(doc)
|
||||||
|
|
||||||
def update(self, docs, golds, drop=0., sgd=None):
|
def update(self, docs, golds, drop=0., sgd=None):
|
||||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||||
|
@ -266,33 +288,23 @@ cdef class Parser:
|
||||||
self.moves.preprocess_gold(gold)
|
self.moves.preprocess_gold(gold)
|
||||||
|
|
||||||
model = get_greedy_model_for_batch([d.tensor for d in docs],
|
model = get_greedy_model_for_batch([d.tensor for d in docs],
|
||||||
self.moves, self.model, self.feat_maps)
|
self.moves, self.model, self.feature_maps)
|
||||||
states = init_states(self.moves, docs)
|
states, offsets = init_states(self.moves, docs)
|
||||||
|
|
||||||
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
||||||
output = list(d_tokens)
|
output = list(d_tokens)
|
||||||
todo = zip(states, golds, d_tokens)
|
todo = zip(states, offsets, golds, d_tokens)
|
||||||
while todo:
|
while todo:
|
||||||
states, golds, d_tokens = zip(*todo)
|
states, offsets, golds, d_tokens = zip(*todo)
|
||||||
scores, finish_update = model.begin_update(token_ids)
|
scores, finish_update = model.begin_update((states, offsets))
|
||||||
d_state_features = finish_update(golds, sgd=sgd)
|
(token_ids, d_state_features) = finish_update(golds, sgd=sgd)
|
||||||
for i, token_ids in enumerate(token_ids):
|
for i, token_ids in enumerate(token_ids):
|
||||||
d_tokens[i][token_ids] += d_state_features[i]
|
d_tokens[i][token_ids] += d_state_features[i]
|
||||||
transition_batch(self.moves, states)
|
transition_batch(self.moves, states, scores)
|
||||||
# Get unfinished states (and their matching gold and token gradients)
|
# Get unfinished states (and their matching gold and token gradients)
|
||||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
def begin_training(self, docs, golds):
|
|
||||||
for gold in golds:
|
|
||||||
self.moves.preprocess_gold(gold)
|
|
||||||
states = self._init_states(docs)
|
|
||||||
tokvecs = [d.tensor for d in docs]
|
|
||||||
|
|
||||||
features = self._get_features(states, tokvecs)
|
|
||||||
self.model.begin_training(features)
|
|
||||||
|
|
||||||
|
|
||||||
def step_through(self, Doc doc, GoldParse gold=None):
|
def step_through(self, Doc doc, GoldParse gold=None):
|
||||||
"""
|
"""
|
||||||
Set up a stepwise state, to introspect and control the transition sequence.
|
Set up a stepwise state, to introspect and control the transition sequence.
|
||||||
|
|
Loading…
Reference in New Issue
Block a user