Update docs [ci skip]

This commit is contained in:
Ines Montani 2020-09-30 15:16:00 +02:00
parent 23c63eefaf
commit 115481aca7
7 changed files with 307 additions and 139 deletions

View File

@ -32,14 +32,16 @@ streaming.
> gold_preproc = false
> max_length = 0
> limit = 0
> augmenter = null
> ```
| Name | Description |
| --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Path~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/training/corpus.py
@ -74,7 +76,7 @@ train/test skew.
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~
| `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~ |
## Corpus.\_\_call\_\_ {#call tag="method"}

View File

@ -192,7 +192,7 @@ browser. Will run a simple web server.
> ```
| Name | Description |
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
| `style` | Visualization style, `"dep"` or `"ent"`. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
@ -499,11 +499,12 @@ the [`Corpus`](/api/corpus) class.
> ```
| Name | Description |
| --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Union[str, Path]~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
### JsonlReader {#jsonlreader}

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 83 KiB

View File

@ -32,7 +32,7 @@ the [config](/usage/training#config):
```ini
[nlp]
pipeline = ["tagger", "parser", "ner"]
pipeline = ["tok2vec", "tagger", "parser", "ner"]
```
import Accordion from 'components/accordion.js'

View File

@ -167,8 +167,8 @@ the binary data:
```python
### spacy.load under the hood
lang = "en"
pipeline = ["tagger", "parser", "ner"]
data_path = "path/to/en_core_web_sm/en_core_web_sm-2.0.0"
pipeline = ["tok2vec", "tagger", "parser", "ner"]
data_path = "path/to/en_core_web_sm/en_core_web_sm-3.0.0"
cls = spacy.util.get_lang_class(lang) # 1. Get Language class, e.g. English
nlp = cls() # 2. Initialize it
@ -197,9 +197,9 @@ list of human-readable component names.
```python
print(nlp.pipeline)
# [('tagger', <spacy.pipeline.Tagger>), ('parser', <spacy.pipeline.DependencyParser>), ('ner', <spacy.pipeline.EntityRecognizer>)]
# [('tok2vec', <spacy.pipeline.Tok2Vec>), ('tagger', <spacy.pipeline.Tagger>), ('parser', <spacy.pipeline.DependencyParser>), ('ner', <spacy.pipeline.EntityRecognizer>)]
print(nlp.pipe_names)
# ['tagger', 'parser', 'ner']
# ['tok2vec', 'tagger', 'parser', 'ner']
```
### Built-in pipeline components {#built-in}
@ -1127,9 +1127,9 @@ customize how the model is updated from examples, how it's initialized, how the
loss is calculated and to add evaluation scores to the training output.
| Name | Description |
| ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| ------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`update`](/api/pipe#update) | Learn from a batch of [`Example`](/api/example) objects containing the predictions and gold-standard annotations, and update the component's model. |
| [`initialize`](/api/pipe#initialize) | Initialize the model. Typically calls into [`Model.initialize`](https://thinc.ai/docs/api-model#initialize) and [`Pipe.create_optimizer`](/api/pipe#create_optimizer) if no optimizer is provided. |
| [`initialize`](/api/pipe#initialize) | Initialize the model. Typically calls into [`Model.initialize`](https://thinc.ai/docs/api-model#initialize) and can be passed custom arguments via the [`[initialize]`](/api/data-formats#config-initialize) config block that are only loaded during training or when you call [`nlp.initialize`](/api/language#initialize), not at runtime. |
| [`get_loss`](/api/pipe#get_loss) | Return a tuple of the loss and the gradient for a batch of [`Example`](/api/example) objects. |
| [`score`](/api/pipe#score) | Score a batch of [`Example`](/api/example) objects and return a dictionary of scores. The [`@Language.factory`](/api/language#factory) decorator can define the `default_socre_weights` of the component to decide which keys of the scores to display during training and how they count towards the final score. |

View File

@ -6,8 +6,9 @@ menu:
- ['Introduction', 'basics']
- ['Quickstart', 'quickstart']
- ['Config System', 'config']
# - ['Data Utilities', 'data']
- ['Custom Training', 'config-custom']
- ['Custom Functions', 'custom-functions']
- ['Data Utilities', 'data']
- ['Parallel Training', 'parallel-training']
- ['Internal API', 'api']
---
@ -122,7 +123,7 @@ treebank.
</Project>
## Training config {#config}
## Training config system {#config}
Training config files include all **settings and hyperparameters** for training
your pipeline. Instead of providing lots of arguments on the command line, you
@ -177,6 +178,7 @@ sections of a config file are:
| `system` | Settings related to system and hardware. Re-used across the config as variables, e.g. `${system.seed}`, and can be [overwritten](#config-overrides) on the CLI. |
| `training` | Settings and controls for the training and evaluation process. |
| `pretraining` | Optional settings and controls for the [language model pretraining](/usage/embeddings-transformers#pretraining). |
| `initialize` | Data resources and arguments passed to components when [`nlp.initialize`](/api/language#initialize) is called before training (but not at runtime). |
<Infobox title="Config format and settings" emoji="📖">
@ -190,6 +192,20 @@ available for the different architectures are documented with the
</Infobox>
### Config lifecycle at runtime and training {#config-lifecycle}
A pipeline's `config.cfg` is considered the "single source of truth", both at
**training** and **runtime**. Under the hood,
[`Language.from_config`](/api/language#from_config) takes care of constructing
the `nlp` object using the settings defined in the config. An `nlp` object's
config is available as [`nlp.config`](/api/language#config) and it includes all
information about the pipeline, as well as the settings used to train and
initialize it.
![Illustration of pipeline lifecycle](../images/lifecycle.svg)
<!-- TODO: explain lifecycle and initialization -->
### Overwriting config settings on the command line {#config-overrides}
The config system means that you can define all settings **in one place** and in
@ -233,6 +249,61 @@ defined in the config file.
$ SPACY_CONFIG_OVERRIDES="--system.gpu_allocator pytorch --training.batch_size 128" ./your_script.sh
```
### Using variable interpolation {#config-interpolation}
Another very useful feature of the config system is that it supports variable
interpolation for both **values and sections**. This means that you only need to
define a setting once and can reference it across your config using the
`${section.value}` syntax. In this example, the value of `seed` is reused within
the `[training]` block, and the whole block of `[training.optimizer]` is reused
in `[pretraining]` and will become `pretraining.optimizer`.
```ini
### config.cfg (excerpt) {highlight="5,18"}
[system]
seed = 0
[training]
seed = ${system.seed}
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 1e-8
[pretraining]
optimizer = ${training.optimizer}
```
You can also use variables inside strings. In that case, it works just like
f-strings in Python. If the value of a variable is not a string, it's converted
to a string.
```ini
[paths]
version = 5
root = "/Users/you/data"
train = "${paths.root}/train_${paths.version}.spacy"
# Result: /Users/you/data/train_5.spacy
```
<Infobox title="Tip: Override variables on the CLI" emoji="💡">
If you need to change certain values between training runs, you can define them
once, reference them as variables and then [override](#config-overrides) them on
the CLI. For example, `--paths.root /other/root` will change the value of `root`
in the block `[paths]` and the change will be reflected across all other values
that reference this variable.
</Infobox>
## Customizing the pipeline and training {#config-custom}
### Defining pipeline components {#config-components}
You typically train a [pipeline](/usage/processing-pipelines) of **one or more
@ -353,59 +424,6 @@ stop = 1000
compound = 1.001
```
### Using variable interpolation {#config-interpolation}
Another very useful feature of the config system is that it supports variable
interpolation for both **values and sections**. This means that you only need to
define a setting once and can reference it across your config using the
`${section.value}` syntax. In this example, the value of `seed` is reused within
the `[training]` block, and the whole block of `[training.optimizer]` is reused
in `[pretraining]` and will become `pretraining.optimizer`.
```ini
### config.cfg (excerpt) {highlight="5,18"}
[system]
seed = 0
[training]
seed = ${system.seed}
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 1e-8
[pretraining]
optimizer = ${training.optimizer}
```
You can also use variables inside strings. In that case, it works just like
f-strings in Python. If the value of a variable is not a string, it's converted
to a string.
```ini
[paths]
version = 5
root = "/Users/you/data"
train = "${paths.root}/train_${paths.version}.spacy"
# Result: /Users/you/data/train_5.spacy
```
<Infobox title="Tip: Override variables on the CLI" emoji="💡">
If you need to change certain values between training runs, you can define them
once, reference them as variables and then [override](#config-overrides) them on
the CLI. For example, `--paths.root /other/root` will change the value of `root`
in the block `[paths]` and the change will be reflected across all other values
that reference this variable.
</Infobox>
### Model architectures {#model-architectures}
> #### 💡 Model type annotations
@ -506,17 +524,7 @@ still look good.
</Accordion>
<!--
## Data Utilities {#data-utilities}
* spacy convert
* The [corpora] block
* Custom corpus class
* Minibatching
* Data augmentation
-->
## Custom Functions {#custom-functions}
## Custom functions {#custom-functions}
Registered functions in the training config files can refer to built-in
implementations, but you can also plug in fully **custom implementations**. All
@ -763,7 +771,96 @@ start = 2
factor = 1.005
```
#### Example: Custom data reading and batching {#custom-code-readers-batchers}
### Defining custom architectures {#custom-architectures}
Built-in pipeline components such as the tagger or named entity recognizer are
constructed with default neural network [models](/api/architectures). You can
change the model architecture entirely by implementing your own custom models
and providing those in the config when creating the pipeline component. See the
documentation on [layers and model architectures](/usage/layers-architectures)
for more details.
> ```ini
> ### config.cfg
> [components.tagger]
> factory = "tagger"
>
> [components.tagger.model]
> @architectures = "custom_neural_network.v1"
> output_width = 512
> ```
```python
### functions.py
from typing import List
from thinc.types import Floats2d
from thinc.api import Model
import spacy
from spacy.tokens import Doc
@spacy.registry.architectures("custom_neural_network.v1")
def MyModel(output_width: int) -> Model[List[Doc], List[Floats2d]]:
return create_model(output_width)
```
## Data utilities {#data}
spaCy includes various features and utilities to make it easy to train from your
own data. If you have training data in a standard format like `.conll` or
`.conllu`, the easiest way to convert it for use with spaCy is to run
[`spacy convert`](/api/cli#convert) and pass it a file and an output directory:
```cli
$ python -m spacy convert ./train.gold.conll ./corpus
```
<Infobox title="Tip: Manage multi-step workflows with projects" emoji="💡">
Training workflows often consist of multiple steps, from preprocessing the data
all the way to packaging and deploying the trained model.
[spaCy projects](/usage/projects) let you define all steps in one file, manage
data assets, track changes and share your end-to-end processes with your team.
</Infobox>
### Working with corpora {#data-corpora}
> #### Example
>
> ```ini
> [corpora]
>
> [corpora.train]
> @readers = "spacy.Corpus.v1"
> path = ${paths.train}
> gold_preproc = false
> max_length = 0
> limit = 0
> augmenter = null
>
> [training]
> train_corpus = "corpora.train"
> ```
The [`[corpora]`](/api/data-formats#config-corpora) block in your config lets
you define **data resources** to use for training, evaluation, pretraining or
any other custom workflows. `corpora.train` and `corpora.dev` are used as
conventions within spaCy's default configs, but you can also define any other
custom blocks. Each section in the corpora config should resolve to a
[`Corpus`](/api/corpus) for example, using spaCy's built-in
[corpus reader](/api/top-level#readers) that takes a path to a binary `.spacy`
file. The `train_corpus` and `dev_corpus` fields in the
[`[training]`](/api/data-formats#config-training) block specify where to find
the corpus in your config. This makes it easy to **swap out** different corpora
by only changing a single config setting.
Instead of making `[corpora]` a block with multiple subsections for each portion
of the data, you can also use a single function that returns a dictionary of
corpora, keyed by corpus name, e.g. `"train"` and `"dev"`. This can be
especially useful if you need to split a single file into corpora for training
and evaluation, without loading the same file twice.
### Custom data reading and batching {#custom-code-readers-batchers}
Some use-cases require **streaming in data** or manipulating datasets on the
fly, rather than generating all data beforehand and storing it to file. Instead
@ -859,37 +956,11 @@ def filter_batch(size: int) -> Callable[[Iterable[Example]], Iterator[List[Examp
return create_filtered_batches
```
### Defining custom architectures {#custom-architectures}
Built-in pipeline components such as the tagger or named entity recognizer are
constructed with default neural network [models](/api/architectures). You can
change the model architecture entirely by implementing your own custom models
and providing those in the config when creating the pipeline component. See the
documentation on [layers and model architectures](/usage/layers-architectures)
for more details.
> ```ini
> ### config.cfg
> [components.tagger]
> factory = "tagger"
>
> [components.tagger.model]
> @architectures = "custom_neural_network.v1"
> output_width = 512
> ```
```python
### functions.py
from typing import List
from thinc.types import Floats2d
from thinc.api import Model
import spacy
from spacy.tokens import Doc
@spacy.registry.architectures("custom_neural_network.v1")
def MyModel(output_width: int) -> Model[List[Doc], List[Floats2d]]:
return create_model(output_width)
```
<!-- TODO:
* Custom corpus class
* Minibatching
* Data augmentation
-->
## Parallel & distributed training with Ray {#parallel-training}

View File

@ -123,13 +123,14 @@ training run, with no hidden defaults, making it easy to rerun your experiments
and track changes. You can use the
[quickstart widget](/usage/training#quickstart) or the `init config` command to
get started. Instead of providing lots of arguments on the command line, you
only need to pass your `config.cfg` file to `spacy train`.
only need to pass your `config.cfg` file to [`spacy train`](/api/cli#train).
Training config files include all **settings and hyperparameters** for training
your pipeline. Some settings can also be registered **functions** that you can
swap out and customize, making it easy to implement your own custom models and
architectures.
![Illustration of pipeline lifecycle](../images/lifecycle.svg)
<Infobox title="Details & Documentation" emoji="📖" list>
- **Usage:** [Training pipelines and models](/usage/training)
@ -723,7 +724,7 @@ nlp = spacy.blank("en")
Because pipeline components are now added using their string names, you won't
have to instantiate the [component classes](/api/#architecture-pipeline)
directly anynore. To configure the component, you can now use the `config`
directly anymore. To configure the component, you can now use the `config`
argument on [`nlp.add_pipe`](/api/language#add_pipe).
> #### config.cfg (excerpt)