mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Restore tqdm imports (#4804)
* set 4.38.0 to minimal version with color bug fix * set imports back to proper place * add upper range for tqdm
This commit is contained in:
		
							parent
							
								
									c466e02466
								
							
						
					
					
						commit
						12158c1e3a
					
				|  | @ -8,6 +8,7 @@ import plac | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| import re | import re | ||||||
| import json | import json | ||||||
|  | import tqdm | ||||||
| 
 | 
 | ||||||
| import spacy | import spacy | ||||||
| import spacy.util | import spacy.util | ||||||
|  | @ -486,9 +487,6 @@ def main( | ||||||
|     vectors_dir=None, |     vectors_dir=None, | ||||||
|     use_oracle_segments=False, |     use_oracle_segments=False, | ||||||
| ): | ): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     Token.set_extension("get_conllu_lines", method=get_token_conllu) |     Token.set_extension("get_conllu_lines", method=get_token_conllu) | ||||||
|     Token.set_extension("begins_fused", default=False) |     Token.set_extension("begins_fused", default=False) | ||||||
|     Token.set_extension("inside_fused", default=False) |     Token.set_extension("inside_fused", default=False) | ||||||
|  |  | ||||||
|  | @ -1,6 +1,7 @@ | ||||||
| import logging | import logging | ||||||
| import random | import random | ||||||
| 
 | 
 | ||||||
|  | from tqdm import tqdm | ||||||
| from collections import defaultdict | from collections import defaultdict | ||||||
| 
 | 
 | ||||||
| logger = logging.getLogger(__name__) | logger = logging.getLogger(__name__) | ||||||
|  | @ -119,8 +120,6 @@ def get_eval_results(data, el_pipe=None): | ||||||
|     Only evaluate entities that overlap between gold and NER, to isolate the performance of the NEL. |     Only evaluate entities that overlap between gold and NER, to isolate the performance of the NEL. | ||||||
|     If the docs in the data require further processing with an entity linker, set el_pipe. |     If the docs in the data require further processing with an entity linker, set el_pipe. | ||||||
|     """ |     """ | ||||||
|     from tqdm import tqdm |  | ||||||
| 
 |  | ||||||
|     docs = [] |     docs = [] | ||||||
|     golds = [] |     golds = [] | ||||||
|     for d, g in tqdm(data, leave=False): |     for d, g in tqdm(data, leave=False): | ||||||
|  |  | ||||||
|  | @ -6,6 +6,7 @@ import bz2 | ||||||
| import logging | import logging | ||||||
| import random | import random | ||||||
| import json | import json | ||||||
|  | from tqdm import tqdm | ||||||
| 
 | 
 | ||||||
| from functools import partial | from functools import partial | ||||||
| 
 | 
 | ||||||
|  | @ -457,9 +458,6 @@ def read_training(nlp, entity_file_path, dev, limit, kb, labels_discard=None): | ||||||
|     """ This method provides training examples that correspond to the entity annotations found by the nlp object. |     """ This method provides training examples that correspond to the entity annotations found by the nlp object. | ||||||
|      For training, it will include both positive and negative examples by using the candidate generator from the kb. |      For training, it will include both positive and negative examples by using the candidate generator from the kb. | ||||||
|      For testing (kb=None), it will include all positive examples only.""" |      For testing (kb=None), it will include all positive examples only.""" | ||||||
| 
 |  | ||||||
|     from tqdm import tqdm |  | ||||||
| 
 |  | ||||||
|     if not labels_discard: |     if not labels_discard: | ||||||
|         labels_discard = [] |         labels_discard = [] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -7,6 +7,7 @@ import attr | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| import re | import re | ||||||
| import json | import json | ||||||
|  | import tqdm | ||||||
| 
 | 
 | ||||||
| import spacy | import spacy | ||||||
| import spacy.util | import spacy.util | ||||||
|  | @ -386,9 +387,6 @@ class TreebankPaths(object): | ||||||
|     limit=("Size limit", "option", "n", int), |     limit=("Size limit", "option", "n", int), | ||||||
| ) | ) | ||||||
| def main(ud_dir, parses_dir, config, corpus, limit=0): | def main(ud_dir, parses_dir, config, corpus, limit=0): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     Token.set_extension("get_conllu_lines", method=get_token_conllu) |     Token.set_extension("get_conllu_lines", method=get_token_conllu) | ||||||
|     Token.set_extension("begins_fused", default=False) |     Token.set_extension("begins_fused", default=False) | ||||||
|     Token.set_extension("inside_fused", default=False) |     Token.set_extension("inside_fused", default=False) | ||||||
|  |  | ||||||
|  | @ -14,6 +14,7 @@ pre-train with the development data, but also not *so* terrible: we're not using | ||||||
| the development labels, after all --- only the unlabelled text. | the development labels, after all --- only the unlabelled text. | ||||||
| """ | """ | ||||||
| import plac | import plac | ||||||
|  | import tqdm | ||||||
| import random | import random | ||||||
| import spacy | import spacy | ||||||
| import thinc.extra.datasets | import thinc.extra.datasets | ||||||
|  | @ -106,9 +107,6 @@ def create_pipeline(width, embed_size, vectors_model): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def train_tensorizer(nlp, texts, dropout, n_iter): | def train_tensorizer(nlp, texts, dropout, n_iter): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     tensorizer = nlp.create_pipe("tensorizer") |     tensorizer = nlp.create_pipe("tensorizer") | ||||||
|     nlp.add_pipe(tensorizer) |     nlp.add_pipe(tensorizer) | ||||||
|     optimizer = nlp.begin_training() |     optimizer = nlp.begin_training() | ||||||
|  | @ -122,9 +120,6 @@ def train_tensorizer(nlp, texts, dropout, n_iter): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def train_textcat(nlp, n_texts, n_iter=10): | def train_textcat(nlp, n_texts, n_iter=10): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     textcat = nlp.get_pipe("textcat") |     textcat = nlp.get_pipe("textcat") | ||||||
|     tok2vec_weights = textcat.model.tok2vec.to_bytes() |     tok2vec_weights = textcat.model.tok2vec.to_bytes() | ||||||
|     (train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts) |     (train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts) | ||||||
|  |  | ||||||
|  | @ -8,6 +8,7 @@ from __future__ import unicode_literals | ||||||
| 
 | 
 | ||||||
| from os import path | from os import path | ||||||
| 
 | 
 | ||||||
|  | import tqdm | ||||||
| import math | import math | ||||||
| import numpy | import numpy | ||||||
| import plac | import plac | ||||||
|  | @ -35,9 +36,6 @@ from tensorflow.contrib.tensorboard.plugins.projector import ( | ||||||
|     ), |     ), | ||||||
| ) | ) | ||||||
| def main(vectors_loc, out_loc, name="spaCy_vectors"): | def main(vectors_loc, out_loc, name="spaCy_vectors"): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     meta_file = "{}.tsv".format(name) |     meta_file = "{}.tsv".format(name) | ||||||
|     out_meta_file = path.join(out_loc, meta_file) |     out_meta_file = path.join(out_loc, meta_file) | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -12,6 +12,7 @@ numpy>=1.15.0 | ||||||
| requests>=2.13.0,<3.0.0 | requests>=2.13.0,<3.0.0 | ||||||
| plac>=0.9.6,<1.2.0 | plac>=0.9.6,<1.2.0 | ||||||
| pathlib==1.0.1; python_version < "3.4" | pathlib==1.0.1; python_version < "3.4" | ||||||
|  | tqdm>=4.38.0,<5.0.0 | ||||||
| # Optional dependencies | # Optional dependencies | ||||||
| jsonschema>=2.6.0,<3.1.0 | jsonschema>=2.6.0,<3.1.0 | ||||||
| # Development dependencies | # Development dependencies | ||||||
|  |  | ||||||
|  | @ -3,6 +3,7 @@ from __future__ import unicode_literals | ||||||
| 
 | 
 | ||||||
| import plac | import plac | ||||||
| import math | import math | ||||||
|  | from tqdm import tqdm | ||||||
| import numpy | import numpy | ||||||
| from ast import literal_eval | from ast import literal_eval | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
|  | @ -116,9 +117,6 @@ def open_file(loc): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def read_attrs_from_deprecated(freqs_loc, clusters_loc): | def read_attrs_from_deprecated(freqs_loc, clusters_loc): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     from tqdm import tqdm |  | ||||||
| 
 |  | ||||||
|     if freqs_loc is not None: |     if freqs_loc is not None: | ||||||
|         with msg.loading("Counting frequencies..."): |         with msg.loading("Counting frequencies..."): | ||||||
|             probs, _ = read_freqs(freqs_loc) |             probs, _ = read_freqs(freqs_loc) | ||||||
|  | @ -201,9 +199,6 @@ def add_vectors(nlp, vectors_loc, prune_vectors, name=None): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def read_vectors(vectors_loc): | def read_vectors(vectors_loc): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     from tqdm import tqdm |  | ||||||
| 
 |  | ||||||
|     f = open_file(vectors_loc) |     f = open_file(vectors_loc) | ||||||
|     shape = tuple(int(size) for size in next(f).split()) |     shape = tuple(int(size) for size in next(f).split()) | ||||||
|     vectors_data = numpy.zeros(shape=shape, dtype="f") |     vectors_data = numpy.zeros(shape=shape, dtype="f") | ||||||
|  | @ -220,9 +215,6 @@ def read_vectors(vectors_loc): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50): | def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     from tqdm import tqdm |  | ||||||
| 
 |  | ||||||
|     counts = PreshCounter() |     counts = PreshCounter() | ||||||
|     total = 0 |     total = 0 | ||||||
|     with freqs_loc.open() as f: |     with freqs_loc.open() as f: | ||||||
|  | @ -252,9 +244,6 @@ def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def read_clusters(clusters_loc): | def read_clusters(clusters_loc): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     from tqdm import tqdm |  | ||||||
| 
 |  | ||||||
|     clusters = {} |     clusters = {} | ||||||
|     if ftfy is None: |     if ftfy is None: | ||||||
|         user_warning(Warnings.W004) |         user_warning(Warnings.W004) | ||||||
|  |  | ||||||
|  | @ -2,6 +2,7 @@ | ||||||
| from __future__ import unicode_literals, division, print_function | from __future__ import unicode_literals, division, print_function | ||||||
| 
 | 
 | ||||||
| import plac | import plac | ||||||
|  | import tqdm | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| import srsly | import srsly | ||||||
| import cProfile | import cProfile | ||||||
|  | @ -46,9 +47,6 @@ def profile(model, inputs=None, n_texts=10000): | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def parse_texts(nlp, texts): | def parse_texts(nlp, texts): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16): |     for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16): | ||||||
|         pass |         pass | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -3,6 +3,7 @@ from __future__ import unicode_literals, division, print_function | ||||||
| 
 | 
 | ||||||
| import plac | import plac | ||||||
| import os | import os | ||||||
|  | import tqdm | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| from thinc.neural._classes.model import Model | from thinc.neural._classes.model import Model | ||||||
| from timeit import default_timer as timer | from timeit import default_timer as timer | ||||||
|  | @ -85,10 +86,6 @@ def train( | ||||||
|     JSON format. To convert data from other formats, use the `spacy convert` |     JSON format. To convert data from other formats, use the `spacy convert` | ||||||
|     command. |     command. | ||||||
|     """ |     """ | ||||||
| 
 |  | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     util.fix_random_seed() |     util.fix_random_seed() | ||||||
|     util.set_env_log(verbose) |     util.set_env_log(verbose) | ||||||
| 
 | 
 | ||||||
|  | @ -516,9 +513,6 @@ def _score_for_model(meta): | ||||||
| 
 | 
 | ||||||
| @contextlib.contextmanager | @contextlib.contextmanager | ||||||
| def _create_progress_bar(total): | def _create_progress_bar(total): | ||||||
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 |  | ||||||
|     import tqdm |  | ||||||
| 
 |  | ||||||
|     if int(os.environ.get("LOG_FRIENDLY", 0)): |     if int(os.environ.get("LOG_FRIENDLY", 0)): | ||||||
|         yield |         yield | ||||||
|     else: |     else: | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user