Modernise vector tests, use add_vecs_to_vocab and don't depend on models

This commit is contained in:
Ines Montani 2017-01-13 14:29:54 +01:00
parent 96f0caa28a
commit 138deb80a1
2 changed files with 123 additions and 112 deletions

View File

@ -1,7 +1,7 @@
# coding: utf-8 # coding: utf-8
from __future__ import unicode_literals from __future__ import unicode_literals
from ..util import get_doc, get_cosine from ..util import get_doc, get_cosine, add_vecs_to_vocab
import numpy import numpy
import pytest import pytest
@ -9,22 +9,16 @@ import pytest
@pytest.fixture @pytest.fixture
def vectors(): def vectors():
return ("apple", [1, 2, 3], "orange", [-1, -2, -3]) return [("apple", [1, 2, 3]), ("orange", [-1, -2, -3])]
@pytest.fixture() @pytest.fixture()
def vocab(en_vocab, vectors): def vocab(en_vocab, vectors):
word1, vec1, word2, vec2 = vectors return add_vecs_to_vocab(en_vocab, vectors)
en_vocab.resize_vectors(3)
lex1 = en_vocab[word1]
lex2 = en_vocab[word2]
lex1.vector = vec1
lex2.vector = vec2
return en_vocab
def test_vectors_similarity_LL(vocab, vectors): def test_vectors_similarity_LL(vocab, vectors):
word1, vec1, word2, vec2 = vectors [(word1, vec1), (word2, vec2)] = vectors
lex1 = vocab[word1] lex1 = vocab[word1]
lex2 = vocab[word2] lex2 = vocab[word2]
assert lex1.has_vector assert lex1.has_vector
@ -37,7 +31,7 @@ def test_vectors_similarity_LL(vocab, vectors):
def test_vectors_similarity_TT(vocab, vectors): def test_vectors_similarity_TT(vocab, vectors):
word1, vec1, word2, vec2 = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = get_doc(vocab, words=[word1, word2]) doc = get_doc(vocab, words=[word1, word2])
assert doc[0].has_vector assert doc[0].has_vector
assert doc[1].has_vector assert doc[1].has_vector
@ -49,18 +43,18 @@ def test_vectors_similarity_TT(vocab, vectors):
def test_vectors_similarity_TD(vocab, vectors): def test_vectors_similarity_TD(vocab, vectors):
word1, vec1, word2, vec2 = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = get_doc(vocab, words=[word1, word2]) doc = get_doc(vocab, words=[word1, word2])
assert doc.similarity(doc[0]) == doc[0].similarity(doc) assert doc.similarity(doc[0]) == doc[0].similarity(doc)
def test_vectors_similarity_DS(vocab, vectors): def test_vectors_similarity_DS(vocab, vectors):
word1, vec1, word2, vec2 = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = get_doc(vocab, words=[word1, word2]) doc = get_doc(vocab, words=[word1, word2])
assert doc.similarity(doc[:2]) == doc[:2].similarity(doc) assert doc.similarity(doc[:2]) == doc[:2].similarity(doc)
def test_vectors_similarity_TS(vocab, vectors): def test_vectors_similarity_TS(vocab, vectors):
word1, vec1, word2, vec2 = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = get_doc(vocab, words=[word1, word2]) doc = get_doc(vocab, words=[word1, word2])
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2]) assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])

View File

@ -1,109 +1,126 @@
# coding: utf-8
from __future__ import unicode_literals
from ...tokenizer import Tokenizer
from ..util import get_doc, add_vecs_to_vocab
import pytest import pytest
@pytest.mark.models
def test_token_vector(EN):
token = EN(u'Apples and oranges')[0]
token.vector
token.vector_norm
@pytest.mark.models @pytest.fixture
def test_lexeme_vector(EN): def vectors():
lexeme = EN.vocab[u'apples'] return [("apple", [0.0, 1.0, 2.0]), ("orange", [3.0, -2.0, 4.0])]
lexeme.vector
lexeme.vector_norm
@pytest.mark.models @pytest.fixture()
def test_doc_vector(EN): def vocab(en_vocab, vectors):
doc = EN(u'Apples and oranges') return add_vecs_to_vocab(en_vocab, vectors)
doc.vector
doc.vector_norm
@pytest.mark.models
def test_span_vector(EN):
span = EN(u'Apples and oranges')[0:2]
span.vector
span.vector_norm
@pytest.mark.models
def test_token_token_similarity(EN):
apples, oranges = EN(u'apples oranges')
assert apples.similarity(oranges) == oranges.similarity(apples)
assert 0.0 < apples.similarity(oranges) < 1.0
@pytest.mark.models
def test_token_lexeme_similarity(EN):
apples = EN(u'apples')
oranges = EN.vocab[u'oranges']
assert apples.similarity(oranges) == oranges.similarity(apples)
assert 0.0 < apples.similarity(oranges) < 1.0
@pytest.mark.models
def test_token_span_similarity(EN):
doc = EN(u'apples orange juice')
apples = doc[0]
oranges = doc[1:3]
assert apples.similarity(oranges) == oranges.similarity(apples)
assert 0.0 < apples.similarity(oranges) < 1.0
@pytest.mark.models
def test_token_doc_similarity(EN):
doc = EN(u'apples orange juice')
apples = doc[0]
assert apples.similarity(doc) == doc.similarity(apples)
assert 0.0 < apples.similarity(doc) < 1.0
@pytest.mark.models
def test_lexeme_span_similarity(EN):
doc = EN(u'apples orange juice')
apples = EN.vocab[u'apples']
span = doc[1:3]
assert apples.similarity(span) == span.similarity(apples)
assert 0.0 < apples.similarity(span) < 1.0
@pytest.mark.models @pytest.fixture()
def test_lexeme_lexeme_similarity(EN): def tokenizer_v(vocab):
apples = EN.vocab[u'apples'] return Tokenizer(vocab, {}, None, None, None)
oranges = EN.vocab[u'oranges']
assert apples.similarity(oranges) == oranges.similarity(apples)
assert 0.0 < apples.similarity(oranges) < 1.0
@pytest.mark.models
def test_lexeme_doc_similarity(EN):
doc = EN(u'apples orange juice')
apples = EN.vocab[u'apples']
assert apples.similarity(doc) == doc.similarity(apples)
assert 0.0 < apples.similarity(doc) < 1.0
@pytest.mark.models @pytest.mark.parametrize('text', ["apple and orange"])
def test_span_span_similarity(EN): def test_vectors_token_vector(tokenizer_v, vectors, text):
doc = EN(u'apples orange juice') doc = tokenizer_v(text)
apples = doc[0:2] assert vectors[0] == (doc[0].text, list(doc[0].vector))
oj = doc[1:3] assert vectors[1] == (doc[2].text, list(doc[2].vector))
assert apples.similarity(oj) == oj.similarity(apples)
assert 0.0 < apples.similarity(oj) < 1.0
@pytest.mark.models
def test_span_doc_similarity(EN):
doc = EN(u'apples orange juice')
apples = doc[0:2]
oj = doc[1:3]
assert apples.similarity(doc) == doc.similarity(apples)
assert 0.0 < apples.similarity(doc) < 1.0
@pytest.mark.models @pytest.mark.parametrize('text', ["apple", "orange"])
def test_doc_doc_similarity(EN): def test_vectors_lexeme_vector(vocab, text):
apples = EN(u'apples and apple pie') lex = vocab[text]
oranges = EN(u'orange juice') assert list(lex.vector)
assert apples.similarity(oranges) == apples.similarity(oranges) assert lex.vector_norm
assert 0.0 < apples.similarity(oranges) < 1.0
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
def test_vectors_doc_vector(vocab, text):
doc = get_doc(vocab, text)
assert list(doc.vector)
assert doc.vector_norm
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
def test_vectors_span_vector(vocab, text):
span = get_doc(vocab, text)[0:2]
assert list(span.vector)
assert span.vector_norm
@pytest.mark.parametrize('text', ["apple orange"])
def test_vectors_token_token_similarity(tokenizer_v, text):
doc = tokenizer_v(text)
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
assert 0.0 < doc[0].similarity(doc[1]) < 1.0
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
token = tokenizer_v(text1)
lex = vocab[text2]
assert token.similarity(lex) == lex.similarity(token)
assert 0.0 < token.similarity(lex) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_token_span_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
assert 0.0 < doc[0].similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_token_doc_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0].similarity(doc) == doc.similarity(doc[0])
assert 0.0 < doc[0].similarity(doc) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_lexeme_span_similarity(vocab, text):
doc = get_doc(vocab, text)
lex = vocab[text[0]]
assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
assert 0.0 < doc.similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
lex1 = vocab[text1]
lex2 = vocab[text2]
assert lex1.similarity(lex2) == lex2.similarity(lex1)
assert 0.0 < lex1.similarity(lex2) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_lexeme_doc_similarity(vocab, text):
doc = get_doc(vocab, text)
lex = vocab[text[0]]
assert lex.similarity(doc) == doc.similarity(lex)
assert 0.0 < lex.similarity(doc) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_span_span_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
assert 0.0 < doc[0:2].similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_span_doc_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
assert 0.0 < doc[0:2].similarity(doc) < 1.0
@pytest.mark.parametrize('text1,text2', [
(["apple", "and", "apple", "pie"], ["orange", "juice"])])
def test_vectors_doc_doc_similarity(vocab, text1, text2):
doc1 = get_doc(vocab, text1)
doc2 = get_doc(vocab, text2)
assert doc1.similarity(doc2) == doc2.similarity(doc1)
assert 0.0 < doc1.similarity(doc2) < 1.0