mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Get non-reference forward func working
This commit is contained in:
parent
4e894e1076
commit
13b0a24870
|
@ -28,7 +28,7 @@ def TransitionModel(
|
|||
|
||||
return Model(
|
||||
name="parser_model",
|
||||
forward=_forward_reference,
|
||||
forward=forward,
|
||||
init=init,
|
||||
layers=[tok2vec_projected],
|
||||
refs={"tok2vec": tok2vec_projected},
|
||||
|
@ -111,7 +111,7 @@ def init(
|
|||
Wu = ops.alloc2f(nO, nH)
|
||||
bu = ops.alloc1f(nO)
|
||||
Wu = zero_init(ops, Wu.shape)
|
||||
#Wl = zero_init(ops, Wl.shape)
|
||||
# Wl = zero_init(ops, Wl.shape)
|
||||
Wl = glorot_uniform_init(ops, Wl.shape)
|
||||
padl = uniform_init(ops, padl.shape) # type: ignore
|
||||
# TODO: Experiment with whether better to initialize upper_W
|
||||
|
@ -141,12 +141,12 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
|
|||
docs, moves = docs_moves
|
||||
states = moves.init_batch(docs)
|
||||
tokvecs, backprop_tok2vec = tok2vec(docs, is_train)
|
||||
tokvecs = model.ops.xp.vstack((tokvecs, lower_pad))
|
||||
feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train)
|
||||
all_ids = []
|
||||
all_which = []
|
||||
all_statevecs = []
|
||||
all_scores = []
|
||||
all_tokfeats = []
|
||||
next_states = [s for s in states if not s.is_final()]
|
||||
unseen_mask = _get_unseen_mask(model)
|
||||
ids = numpy.zeros((len(states), nF), dtype="i")
|
||||
|
@ -155,11 +155,16 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
|
|||
ids = ids[: len(next_states)]
|
||||
for i, state in enumerate(next_states):
|
||||
state.set_context_tokens(ids, i, nF)
|
||||
preacts = feats[ids, arange].sum(axis=1) # type: ignore
|
||||
# Sum the state features, add the bias and apply the activation (maxout)
|
||||
# to create the state vectors.
|
||||
preacts2f = feats[ids, arange].sum(axis=1) # type: ignore
|
||||
preacts2f += lower_b
|
||||
preacts = model.ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP)
|
||||
assert preacts.shape[0] == len(next_states), preacts.shape
|
||||
statevecs, which = ops.maxout(preacts)
|
||||
# Multiply the state-vector by the scores weights and add the bias,
|
||||
# to get the logits.
|
||||
scores = ops.gemm(statevecs, upper_W, trans2=True)
|
||||
scores = model.ops.gemm(statevecs, upper_W, trans2=True)
|
||||
scores += upper_b
|
||||
scores[:, unseen_mask == 0] = model.ops.xp.nanmin(scores)
|
||||
# Transition the states, filtering out any that are finished.
|
||||
|
@ -167,17 +172,15 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
|
|||
all_scores.append(scores)
|
||||
if is_train:
|
||||
# Remember intermediate results for the backprop.
|
||||
all_tokfeats.append(tokfeats)
|
||||
all_ids.append(ids.copy())
|
||||
all_statevecs.append(statevecs)
|
||||
all_which.append(which)
|
||||
|
||||
nS = sum(len(s.history) for s in states)
|
||||
|
||||
def backprop_parser(d_states_d_scores):
|
||||
d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1])
|
||||
ids = model.ops.xp.vstack(all_ids)
|
||||
which = ops.xp.vstack(all_which)
|
||||
statevecs = model.ops.xp.vstack(all_statevecs)
|
||||
_, d_scores = d_states_d_scores
|
||||
if model.attrs.get("unseen_classes"):
|
||||
# If we have a negative gradient (i.e. the probability should
|
||||
|
@ -187,32 +190,30 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo
|
|||
if (d_scores[:, clas] < 0).any():
|
||||
model.attrs["unseen_classes"].remove(clas)
|
||||
d_scores *= unseen_mask
|
||||
statevecs = ops.xp.vstack(all_statevecs)
|
||||
tokfeats = ops.xp.vstack(all_tokfeats)
|
||||
assert statevecs.shape == (nS, nH), statevecs.shape
|
||||
assert d_scores.shape == (nS, nO), d_scores.shape
|
||||
# Calculate the gradients for the parameters of the upper layer.
|
||||
# The weight gemm is (nS, nO) @ (nS, nH).T
|
||||
model.inc_grad("upper_b", d_scores.sum(axis=0))
|
||||
model.inc_grad("upper_W", model.ops.gemm(d_scores, statevecs, trans1=True))
|
||||
# Now calculate d_statevecs, by backproping through the upper linear layer.
|
||||
# This gemm is (nS, nO) @ (nO, nH)
|
||||
d_statevecs = model.ops.gemm(d_scores, upper_W)
|
||||
# Backprop through the maxout activation
|
||||
d_preacts = model.ops.backprop_maxout(d_statevecs, which, model.get_dim("nP"))
|
||||
model.inc_grad("lower_b", d_preacts.sum(axis=0))
|
||||
model.inc_grad("lower_W", model.ops.gemm(d_preacts, tokfeats, trans1=True))
|
||||
d_preacts = model.ops.backprop_maxout(d_statevecs, which, nP)
|
||||
d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP)
|
||||
model.inc_grad("lower_b", d_preacts2f.sum(axis=0))
|
||||
# We don't need to backprop the summation, because we pass back the IDs instead
|
||||
d_state_features = backprop_feats((d_preacts, all_ids))
|
||||
ids1d = model.ops.xp.vstack(all_ids).flatten()
|
||||
d_state_features = d_state_features.reshape((ids1d.size, -1))
|
||||
d_tokvecs = model.ops.alloc((tokvecs.shape[0] + 1, tokvecs.shape[1]))
|
||||
model.ops.scatter_add(d_tokvecs, ids1d, d_state_features)
|
||||
return (backprop_tok2vec(d_tokvecs), None)
|
||||
d_state_features = backprop_feats((d_preacts2f, ids))
|
||||
d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1])
|
||||
model.ops.scatter_add(d_tokvecs, ids, d_state_features)
|
||||
model.inc_grad("lower_pad", d_tokvecs[-1])
|
||||
return (backprop_tok2vec(d_tokvecs[:-1]), None)
|
||||
|
||||
return (states, all_scores), backprop_parser
|
||||
|
||||
|
||||
|
||||
def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: bool):
|
||||
def _forward_reference(
|
||||
model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: bool
|
||||
):
|
||||
"""Slow reference implementation, without the precomputation"""
|
||||
nF = model.get_dim("nF")
|
||||
tok2vec = model.get_ref("tok2vec")
|
||||
|
@ -294,7 +295,7 @@ def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is
|
|||
d_statevecs = model.ops.gemm(d_scores, upper_W)
|
||||
# Backprop through the maxout activation
|
||||
d_preacts = model.ops.backprop_maxout(d_statevecs, which, nP)
|
||||
d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], nH*nP)
|
||||
d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP)
|
||||
# Now increment the gradients for the lower layer.
|
||||
# The gemm here is (nS, nH*nP) @ (nS, nF*nI)
|
||||
model.inc_grad("lower_b", d_preacts2f.sum(axis=0))
|
||||
|
@ -311,7 +312,6 @@ def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is
|
|||
return (states, all_scores), backprop_parser
|
||||
|
||||
|
||||
|
||||
def _get_unseen_mask(model: Model) -> Floats1d:
|
||||
mask = model.ops.alloc1f(model.get_dim("nO"))
|
||||
mask.fill(1)
|
||||
|
@ -321,17 +321,18 @@ def _get_unseen_mask(model: Model) -> Floats1d:
|
|||
|
||||
|
||||
def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
|
||||
|
||||
W: Floats4d = model.get_param("lower_W")
|
||||
pad: Floats4d = model.get_param("lower_pad")
|
||||
W: Floats2d = model.get_param("lower_W")
|
||||
nF = model.get_dim("nF")
|
||||
nH = model.get_dim("nH")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
# The weights start out (nH * nP, nF * nI). Transpose and reshape to (nF * nH *nP, nI)
|
||||
W3f = model.ops.reshape3f(W, nH * nP, nF, nI)
|
||||
W3f = W3f.transpose((1, 0, 2))
|
||||
W2f = model.ops.reshape2f(W3f, nF * nH * nP, nI)
|
||||
assert X.shape == (X.shape[0], nI), X.shape
|
||||
Yf_ = model.ops.gemm(X, model.ops.reshape2f(W, nF * nH * nP, nI), trans2=True)
|
||||
Yf = model.ops.reshape4f(Yf_, Yf_.shape[0], nF, nH, nP)
|
||||
Yf = model.ops.xp.vstack((Yf, pad))
|
||||
Yf_ = model.ops.gemm(X, W2f, trans2=True)
|
||||
Yf = model.ops.reshape3f(Yf_, Yf_.shape[0], nF, nH * nP)
|
||||
|
||||
def backward(dY_ids: Tuple[Floats3d, Ints2d]):
|
||||
# This backprop is particularly tricky, because we get back a different
|
||||
|
@ -348,54 +349,15 @@ def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
|
|||
# However, we avoid building that array for efficiency -- and just pass
|
||||
# in the indices.
|
||||
dY, ids = dY_ids
|
||||
assert dY.ndim == 3
|
||||
assert dY.shape[1] == nH, dY.shape
|
||||
assert dY.shape[2] == nP, dY.shape
|
||||
# nB = dY.shape[0]
|
||||
# model.inc_grad(
|
||||
# "lower_pad", _backprop_precomputable_affine_padding(model, dY, ids)
|
||||
# )
|
||||
# model.inc_grad("lower_b", dY.sum(axis=0)) # type: ignore
|
||||
dY = model.ops.reshape2f(dY, dY.shape[0], nH * nP)
|
||||
Wopfi = W.transpose((1, 2, 0, 3))
|
||||
Wopfi = Wopfi.reshape((nH * nP, nF * nI))
|
||||
dXf = model.ops.gemm(dY.reshape((dY.shape[0], nH * nP)), Wopfi)
|
||||
ids1d = model.ops.xp.vstack(ids).flatten()
|
||||
Xf = model.ops.reshape2f(X[ids1d], -1, nF * nI)
|
||||
dWopfi = model.ops.gemm(dY, Xf, trans1=True)
|
||||
dWopfi = dWopfi.reshape((nH, nP, nF, nI))
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
dWopfi = dWopfi.transpose((2, 0, 1, 3))
|
||||
model.inc_grad("lower_W", dWopfi)
|
||||
dXf = model.ops.gemm(dY, W)
|
||||
Xf = X[ids].reshape((ids.shape[0], -1))
|
||||
dW = model.ops.gemm(dY, Xf, trans1=True)
|
||||
model.inc_grad("lower_W", dW)
|
||||
return model.ops.reshape3f(dXf, dXf.shape[0], nF, nI)
|
||||
|
||||
return Yf, backward
|
||||
|
||||
|
||||
def _backprop_precomputable_affine_padding(model, dY, ids):
|
||||
ids = model.ops.xp.vstack(ids)
|
||||
nB = dY.shape[0]
|
||||
nF = model.get_dim("nF")
|
||||
nP = model.get_dim("nP")
|
||||
nH = model.get_dim("nH")
|
||||
# Backprop the "padding", used as a filler for missing values.
|
||||
# Values that are missing are set to -1, and each state vector could
|
||||
# have multiple missing values. The padding has different values for
|
||||
# different missing features. The gradient of the padding vector is:
|
||||
#
|
||||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# if ids[b, f] < 0:
|
||||
# d_pad[f] += dY[b]
|
||||
#
|
||||
# Which can be rewritten as:
|
||||
#
|
||||
# (ids < 0).T @ dY
|
||||
mask = model.ops.asarray(ids < 0, dtype="f")
|
||||
d_pad = model.ops.gemm(mask, dY.reshape(nB, nH * nP), trans1=True)
|
||||
return d_pad.reshape((1, nF, nH, nP))
|
||||
|
||||
|
||||
def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]:
|
||||
if Y is None:
|
||||
return None
|
||||
|
|
Loading…
Reference in New Issue
Block a user