mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge remote-tracking branch 'refs/remotes/honnibal/master'
This commit is contained in:
commit
14b89ff1c5
|
@ -11,6 +11,7 @@ import ujson
|
|||
import codecs
|
||||
from preshed.counter import PreshCounter
|
||||
from joblib import Parallel, delayed
|
||||
import io
|
||||
|
||||
from spacy.en import English
|
||||
from spacy.strings import StringStore
|
||||
|
|
273
examples/nn_text_class.py
Normal file
273
examples/nn_text_class.py
Normal file
|
@ -0,0 +1,273 @@
|
|||
from __future__ import unicode_literals
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
import numpy
|
||||
import plac
|
||||
|
||||
import spacy.en
|
||||
|
||||
|
||||
def read_data(nlp, data_dir):
|
||||
for subdir, label in (('pos', 1), ('neg', 0)):
|
||||
for filename in (data_dir / subdir).iterdir():
|
||||
text = filename.open().read()
|
||||
doc = nlp(text)
|
||||
if len(doc) >= 1:
|
||||
yield doc, label
|
||||
|
||||
|
||||
def partition(examples, split_size):
|
||||
examples = list(examples)
|
||||
numpy.random.shuffle(examples)
|
||||
n_docs = len(examples)
|
||||
split = int(n_docs * split_size)
|
||||
return examples[:split], examples[split:]
|
||||
|
||||
|
||||
def minibatch(data, bs=24):
|
||||
for i in range(0, len(data), bs):
|
||||
yield data[i:i+bs]
|
||||
|
||||
|
||||
class Extractor(object):
|
||||
def __init__(self, nlp, vector_length, dropout=0.3):
|
||||
self.nlp = nlp
|
||||
self.dropout = dropout
|
||||
self.vector = numpy.zeros((vector_length, ))
|
||||
|
||||
def doc2bow(self, doc, dropout=None):
|
||||
if dropout is None:
|
||||
dropout = self.dropout
|
||||
bow = defaultdict(int)
|
||||
all_words = defaultdict(int)
|
||||
for word in doc:
|
||||
if numpy.random.random() >= dropout and not word.is_punct:
|
||||
bow[word.lower] += 1
|
||||
all_words[word.lower] += 1
|
||||
if sum(bow.values()) >= 1:
|
||||
return bow
|
||||
else:
|
||||
return all_words
|
||||
|
||||
def bow2vec(self, bow, E):
|
||||
self.vector.fill(0)
|
||||
n = 0
|
||||
for orth_id, freq in bow.items():
|
||||
self.vector += self.nlp.vocab[self.nlp.vocab.strings[orth_id]].repvec * freq
|
||||
# Apply the fine-tuning we've learned
|
||||
if orth_id < E.shape[0]:
|
||||
self.vector += E[orth_id] * freq
|
||||
n += freq
|
||||
return self.vector / n
|
||||
|
||||
|
||||
class NeuralNetwork(object):
|
||||
def __init__(self, depth, width, n_classes, n_vocab, extracter, optimizer):
|
||||
self.depth = depth
|
||||
self.width = width
|
||||
self.n_classes = n_classes
|
||||
self.weights = Params.random(depth, width, width, n_classes, n_vocab)
|
||||
self.doc2bow = extracter.doc2bow
|
||||
self.bow2vec = extracter.bow2vec
|
||||
self.optimizer = optimizer
|
||||
self._gradient = Params.zero(depth, width, width, n_classes, n_vocab)
|
||||
self._activity = numpy.zeros((depth, width))
|
||||
|
||||
def train(self, batch):
|
||||
activity = self._activity
|
||||
gradient = self._gradient
|
||||
activity.fill(0)
|
||||
gradient.data.fill(0)
|
||||
loss = 0
|
||||
word_freqs = defaultdict(int)
|
||||
for doc, label in batch:
|
||||
word_ids = self.doc2bow(doc)
|
||||
vector = self.bow2vec(word_ids, self.weights.E)
|
||||
self.forward(activity, vector)
|
||||
loss += self.backprop(vector, gradient, activity, word_ids, label)
|
||||
for w, freq in word_ids.items():
|
||||
word_freqs[w] += freq
|
||||
self.optimizer(self.weights, gradient, len(batch), word_freqs)
|
||||
return loss
|
||||
|
||||
def predict(self, doc):
|
||||
actv = self._activity
|
||||
actv.fill(0)
|
||||
W = self.weights.W
|
||||
b = self.weights.b
|
||||
E = self.weights.E
|
||||
|
||||
vector = self.bow2vec(self.doc2bow(doc, dropout=0.0), E)
|
||||
self.forward(actv, vector)
|
||||
return numpy.argmax(softmax(actv[-1], W[-1], b[-1]))
|
||||
|
||||
def forward(self, actv, in_):
|
||||
actv.fill(0)
|
||||
W = self.weights.W; b = self.weights.b
|
||||
actv[0] = relu(in_, W[0], b[0])
|
||||
for i in range(1, self.depth):
|
||||
actv[i] = relu(actv[i-1], W[i], b[i])
|
||||
|
||||
def backprop(self, input_vector, gradient, activity, ids, label):
|
||||
W = self.weights.W
|
||||
b = self.weights.b
|
||||
|
||||
target = numpy.zeros(self.n_classes)
|
||||
target[label] = 1.0
|
||||
pred = softmax(activity[-1], W[-1], b[-1])
|
||||
delta = pred - target
|
||||
|
||||
for i in range(self.depth, 0, -1):
|
||||
gradient.b[i] += delta
|
||||
gradient.W[i] += numpy.outer(delta, activity[i-1])
|
||||
delta = d_relu(activity[i-1]) * W[i].T.dot(delta)
|
||||
|
||||
gradient.b[0] += delta
|
||||
gradient.W[0] += numpy.outer(delta, input_vector)
|
||||
tuning = W[0].T.dot(delta).reshape((self.width,)) / len(ids)
|
||||
for w, freq in ids.items():
|
||||
if w < gradient.E.shape[0]:
|
||||
gradient.E[w] += tuning * freq
|
||||
return -sum(target * numpy.log(pred))
|
||||
|
||||
|
||||
def softmax(actvn, W, b):
|
||||
w = W.dot(actvn) + b
|
||||
ew = numpy.exp(w - max(w))
|
||||
return (ew / sum(ew)).ravel()
|
||||
|
||||
|
||||
def relu(actvn, W, b):
|
||||
x = W.dot(actvn) + b
|
||||
return x * (x > 0)
|
||||
|
||||
|
||||
def d_relu(x):
|
||||
return x > 0
|
||||
|
||||
|
||||
class Adagrad(object):
|
||||
def __init__(self, lr, rho):
|
||||
self.eps = 1e-3
|
||||
# initial learning rate
|
||||
self.learning_rate = lr
|
||||
self.rho = rho
|
||||
# stores sum of squared gradients
|
||||
#self.h = numpy.zeros(self.dim)
|
||||
#self._curr_rate = numpy.zeros(self.h.shape)
|
||||
self.h = None
|
||||
self._curr_rate = None
|
||||
|
||||
def __call__(self, weights, gradient, batch_size, word_freqs):
|
||||
if self.h is None:
|
||||
self.h = numpy.zeros(gradient.data.shape)
|
||||
self._curr_rate = numpy.zeros(gradient.data.shape)
|
||||
self.L2_penalty(gradient, weights, word_freqs)
|
||||
update = self.rescale(gradient.data / batch_size)
|
||||
weights.data -= update
|
||||
|
||||
def rescale(self, gradient):
|
||||
if self.h is None:
|
||||
self.h = numpy.zeros(gradient.data.shape)
|
||||
self._curr_rate = numpy.zeros(gradient.data.shape)
|
||||
self._curr_rate.fill(0)
|
||||
self.h += gradient ** 2
|
||||
self._curr_rate = self.learning_rate / (numpy.sqrt(self.h) + self.eps)
|
||||
return self._curr_rate * gradient
|
||||
|
||||
def L2_penalty(self, gradient, weights, word_freqs):
|
||||
# L2 Regularization
|
||||
for i in range(len(weights.W)):
|
||||
gradient.W[i] += weights.W[i] * self.rho
|
||||
gradient.b[i] += weights.b[i] * self.rho
|
||||
for w, freq in word_freqs.items():
|
||||
if w < gradient.E.shape[0]:
|
||||
gradient.E[w] += weights.E[w] * self.rho
|
||||
|
||||
|
||||
class Params(object):
|
||||
@classmethod
|
||||
def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab):
|
||||
return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: numpy.zeros((x,)))
|
||||
|
||||
@classmethod
|
||||
def random(cls, depth, nE, nH, nL, nV):
|
||||
return cls(depth, nE, nH, nL, nV, lambda x: (numpy.random.rand(x) * 2 - 1) * 0.08)
|
||||
|
||||
def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer):
|
||||
nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab
|
||||
n_weights = sum([
|
||||
(nE * nH) + nH,
|
||||
(nH * nH + nH) * depth,
|
||||
(nH * nL) + nL,
|
||||
(nV * nE)
|
||||
])
|
||||
self.data = initializer(n_weights)
|
||||
self.W = []
|
||||
self.b = []
|
||||
i = self._add_layer(0, nE, nH)
|
||||
for _ in range(1, depth):
|
||||
i = self._add_layer(i, nH, nH)
|
||||
i = self._add_layer(i, nL, nH)
|
||||
self.E = self.data[i : i + (nV * nE)].reshape((nV, nE))
|
||||
self.E.fill(0)
|
||||
|
||||
def _add_layer(self, start, x, y):
|
||||
end = start + (x * y)
|
||||
self.W.append(self.data[start : end].reshape((x, y)))
|
||||
self.b.append(self.data[end : end + x].reshape((x, )))
|
||||
return end + x
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
data_dir=("Data directory", "positional", None, Path),
|
||||
n_iter=("Number of iterations (epochs)", "option", "i", int),
|
||||
width=("Size of hidden layers", "option", "H", int),
|
||||
depth=("Depth", "option", "d", int),
|
||||
dropout=("Drop-out rate", "option", "r", float),
|
||||
rho=("Regularization penalty", "option", "p", float),
|
||||
eta=("Learning rate", "option", "e", float),
|
||||
batch_size=("Batch size", "option", "b", int),
|
||||
vocab_size=("Number of words to fine-tune", "option", "w", int),
|
||||
)
|
||||
def main(data_dir, depth=3, width=300, n_iter=5, vocab_size=40000,
|
||||
batch_size=24, dropout=0.3, rho=1e-5, eta=0.005):
|
||||
n_classes = 2
|
||||
print("Loading")
|
||||
nlp = spacy.en.English(parser=False)
|
||||
train_data, dev_data = partition(read_data(nlp, data_dir / 'train'), 0.8)
|
||||
print("Begin training")
|
||||
extracter = Extractor(nlp, width, dropout=0.3)
|
||||
optimizer = Adagrad(eta, rho)
|
||||
model = NeuralNetwork(depth, width, n_classes, vocab_size, extracter, optimizer)
|
||||
prev_best = 0
|
||||
best_weights = None
|
||||
for epoch in range(n_iter):
|
||||
numpy.random.shuffle(train_data)
|
||||
train_loss = 0.0
|
||||
for batch in minibatch(train_data, bs=batch_size):
|
||||
train_loss += model.train(batch)
|
||||
n_correct = sum(model.predict(x) == y for x, y in dev_data)
|
||||
print(epoch, train_loss, n_correct / len(dev_data))
|
||||
if n_correct >= prev_best:
|
||||
best_weights = model.weights.data.copy()
|
||||
prev_best = n_correct
|
||||
|
||||
model.weights.data = best_weights
|
||||
print("Evaluating")
|
||||
eval_data = list(read_data(nlp, data_dir / 'test'))
|
||||
n_correct = sum(model.predict(x) == y for x, y in eval_data)
|
||||
print(n_correct / len(eval_data))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#import cProfile
|
||||
#import pstats
|
||||
#cProfile.runctx("main(Path('data/aclImdb'))", globals(), locals(), "Profile.prof")
|
||||
#s = pstats.Stats("Profile.prof")
|
||||
#s.strip_dirs().sort_stats("time").print_stats(100)
|
||||
plac.call(main)
|
2
fabfile.py
vendored
2
fabfile.py
vendored
|
@ -48,7 +48,7 @@ def prebuild(build_dir='/tmp/build_spacy'):
|
|||
local('virtualenv ' + build_venv)
|
||||
with prefix('cd %s && PYTHONPATH=`pwd` && . %s/bin/activate' % (build_dir, build_venv)):
|
||||
local('pip install cython fabric fabtools pytest')
|
||||
local('pip install -r requirements.txt')
|
||||
local('pip install --no-cache-dir -r requirements.txt')
|
||||
local('fab clean make')
|
||||
local('cp -r %s/corpora/en/wordnet corpora/en/' % spacy_dir)
|
||||
local('cp %s/corpora/en/freqs.txt.gz corpora/en/' % spacy_dir)
|
||||
|
|
|
@ -342,7 +342,7 @@ hardcoded_specials = {
|
|||
"\n": [{"F": "\n", "pos": "SP"}],
|
||||
"\t": [{"F": "\t", "pos": "SP"}],
|
||||
" ": [{"F": " ", "pos": "SP"}],
|
||||
u"\xa0": [{"F": u"\xa0", "pos": "SP", "L": " "}]
|
||||
u"\u00a0": [{"F": u"\u00a0", "pos": "SP", "L": " "}]
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
\.\.\.
|
||||
(?<=[a-z])\.(?=[A-Z])
|
||||
(?<=[a-zA-Z])-(?=[a-zA-z])
|
||||
(?<=[0-9])-(?=[0-9])
|
||||
|
|
|
@ -6,7 +6,6 @@ thinc == 3.3
|
|||
murmurhash == 0.24
|
||||
text-unidecode
|
||||
numpy
|
||||
wget
|
||||
plac
|
||||
six
|
||||
ujson
|
||||
|
|
9
setup.py
9
setup.py
|
@ -162,7 +162,7 @@ def run_setup(exts):
|
|||
ext_modules=exts,
|
||||
license="MIT",
|
||||
install_requires=['numpy', 'murmurhash', 'cymem >= 1.11', 'preshed >= 0.42',
|
||||
'thinc == 3.3', "text_unidecode", 'wget', 'plac', 'six',
|
||||
'thinc == 3.3', "text_unidecode", 'plac', 'six',
|
||||
'ujson', 'cloudpickle'],
|
||||
setup_requires=["headers_workaround"],
|
||||
cmdclass = {'build_ext': build_ext_subclass },
|
||||
|
@ -175,13 +175,14 @@ def run_setup(exts):
|
|||
headers_workaround.install_headers('numpy')
|
||||
|
||||
|
||||
VERSION = '0.95'
|
||||
VERSION = '0.96'
|
||||
def main(modules, is_pypy):
|
||||
language = "cpp"
|
||||
includes = ['.', path.join(sys.prefix, 'include')]
|
||||
if sys.platform.startswith('darwin'):
|
||||
compile_options['other'].append(['-mmacosx-version-min=10.8', '-stdlib=libc++'])
|
||||
link_opions['other'].append('-lc++')
|
||||
compile_options['other'].append('-mmacosx-version-min=10.8')
|
||||
compile_options['other'].append('-stdlib=libc++')
|
||||
link_options['other'].append('-lc++')
|
||||
if use_cython:
|
||||
cython_setup(modules, language, includes)
|
||||
else:
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
from __future__ import print_function
|
||||
from os import path
|
||||
import sys
|
||||
import os
|
||||
import tarfile
|
||||
import shutil
|
||||
import wget
|
||||
import plac
|
||||
|
||||
from . import uget
|
||||
|
||||
# TODO: Read this from the same source as the setup
|
||||
VERSION = '0.9.5'
|
||||
|
||||
|
@ -13,39 +15,45 @@ AWS_STORE = 'https://s3-us-west-1.amazonaws.com/media.spacynlp.com'
|
|||
|
||||
ALL_DATA_DIR_URL = '%s/en_data_all-%s.tgz' % (AWS_STORE, VERSION)
|
||||
|
||||
DEST_DIR = path.join(path.dirname(__file__), 'data')
|
||||
DEST_DIR = path.join(path.dirname(path.abspath(__file__)), 'data')
|
||||
|
||||
def download_file(url, out):
|
||||
wget.download(url, out=out)
|
||||
return url.rsplit('/', 1)[1]
|
||||
|
||||
def download_file(url, dest_dir):
|
||||
return uget.download(url, dest_dir, console=sys.stdout)
|
||||
|
||||
|
||||
def install_data(url, dest_dir):
|
||||
filename = download_file(url, dest_dir)
|
||||
t = tarfile.open(path.join(dest_dir, filename))
|
||||
t = tarfile.open(filename)
|
||||
t.extractall(dest_dir)
|
||||
|
||||
|
||||
def install_parser_model(url, dest_dir):
|
||||
filename = download_file(url, dest_dir)
|
||||
t = tarfile.open(path.join(dest_dir, filename), mode=":gz")
|
||||
t.extractall(path.dirname(__file__))
|
||||
t = tarfile.open(filename, mode=":gz")
|
||||
t.extractall(dest_dir)
|
||||
|
||||
|
||||
def install_dep_vectors(url, dest_dir):
|
||||
if not os.path.exists(dest_dir):
|
||||
os.mkdir(dest_dir)
|
||||
|
||||
filename = download_file(url, dest_dir)
|
||||
download_file(url, dest_dir)
|
||||
|
||||
|
||||
def main(data_size='all'):
|
||||
@plac.annotations(
|
||||
force=("Force overwrite", "flag", "f", bool),
|
||||
)
|
||||
def main(data_size='all', force=False):
|
||||
if data_size == 'all':
|
||||
data_url = ALL_DATA_DIR_URL
|
||||
elif data_size == 'small':
|
||||
data_url = SM_DATA_DIR_URL
|
||||
if path.exists(DEST_DIR):
|
||||
|
||||
if force and path.exists(DEST_DIR):
|
||||
shutil.rmtree(DEST_DIR)
|
||||
install_data(data_url, path.dirname(DEST_DIR))
|
||||
|
||||
if not os.path.exists(DEST_DIR):
|
||||
os.makedirs(DEST_DIR)
|
||||
|
||||
install_data(data_url, DEST_DIR)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
246
spacy/en/uget.py
Normal file
246
spacy/en/uget.py
Normal file
|
@ -0,0 +1,246 @@
|
|||
import os
|
||||
import time
|
||||
import io
|
||||
import math
|
||||
import re
|
||||
|
||||
try:
|
||||
from urllib.parse import urlparse
|
||||
from urllib.request import urlopen, Request
|
||||
from urllib.error import HTTPError
|
||||
except ImportError:
|
||||
from urllib2 import urlopen, urlparse, Request, HTTPError
|
||||
|
||||
|
||||
class UnknownContentLengthException(Exception): pass
|
||||
class InvalidChecksumException(Exception): pass
|
||||
class UnsupportedHTTPCodeException(Exception): pass
|
||||
class InvalidOffsetException(Exception): pass
|
||||
class MissingChecksumHeader(Exception): pass
|
||||
|
||||
|
||||
CHUNK_SIZE = 16 * 1024
|
||||
|
||||
|
||||
class RateSampler(object):
|
||||
def __init__(self, period=1):
|
||||
self.rate = None
|
||||
self.reset = True
|
||||
self.period = period
|
||||
|
||||
def __enter__(self):
|
||||
if self.reset:
|
||||
self.reset = False
|
||||
self.start = time.time()
|
||||
self.counter = 0
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
elapsed = time.time() - self.start
|
||||
if elapsed >= self.period:
|
||||
self.reset = True
|
||||
self.rate = float(self.counter) / elapsed
|
||||
|
||||
def update(self, value):
|
||||
self.counter += value
|
||||
|
||||
def format(self, unit="MB"):
|
||||
if self.rate is None:
|
||||
return None
|
||||
|
||||
divisor = {'MB': 1048576, 'kB': 1024}
|
||||
return "%0.2f%s/s" % (self.rate / divisor[unit], unit)
|
||||
|
||||
|
||||
class TimeEstimator(object):
|
||||
def __init__(self, cooldown=1):
|
||||
self.cooldown = cooldown
|
||||
self.start = time.time()
|
||||
self.time_left = None
|
||||
|
||||
def update(self, bytes_read, total_size):
|
||||
elapsed = time.time() - self.start
|
||||
if elapsed > self.cooldown:
|
||||
self.time_left = math.ceil(elapsed * total_size /
|
||||
bytes_read - elapsed)
|
||||
|
||||
def format(self):
|
||||
if self.time_left is None:
|
||||
return None
|
||||
|
||||
res = "eta "
|
||||
if self.time_left / 60 >= 1:
|
||||
res += "%dm " % (self.time_left / 60)
|
||||
return res + "%ds" % (self.time_left % 60)
|
||||
|
||||
|
||||
def format_bytes_read(bytes_read, unit="MB"):
|
||||
divisor = {'MB': 1048576, 'kB': 1024}
|
||||
return "%0.2f%s" % (float(bytes_read) / divisor[unit], unit)
|
||||
|
||||
|
||||
def format_percent(bytes_read, total_size):
|
||||
percent = round(bytes_read * 100.0 / total_size, 2)
|
||||
return "%0.2f%%" % percent
|
||||
|
||||
|
||||
def get_content_range(response):
|
||||
content_range = response.headers.get('Content-Range', "").strip()
|
||||
if content_range:
|
||||
m = re.match(r"bytes (\d+)-(\d+)/(\d+)", content_range)
|
||||
if m:
|
||||
return [int(v) for v in m.groups()]
|
||||
|
||||
|
||||
def get_content_length(response):
|
||||
if 'Content-Length' not in response.headers:
|
||||
raise UnknownContentLengthException
|
||||
return int(response.headers.get('Content-Length').strip())
|
||||
|
||||
|
||||
def get_url_meta(url, checksum_header=None):
|
||||
class HeadRequest(Request):
|
||||
def get_method(self):
|
||||
return "HEAD"
|
||||
|
||||
r = urlopen(HeadRequest(url))
|
||||
res = {'size': get_content_length(r)}
|
||||
|
||||
if checksum_header:
|
||||
value = r.headers.get(checksum_header)
|
||||
if value:
|
||||
res['checksum'] = value
|
||||
|
||||
r.close()
|
||||
return res
|
||||
|
||||
|
||||
def progress(console, bytes_read, total_size, transfer_rate, eta):
|
||||
fields = [
|
||||
format_bytes_read(bytes_read),
|
||||
format_percent(bytes_read, total_size),
|
||||
transfer_rate.format(),
|
||||
eta.format(),
|
||||
" " * 10,
|
||||
]
|
||||
console.write("Downloaded %s\r" % " ".join(filter(None, fields)))
|
||||
console.flush()
|
||||
|
||||
|
||||
def read_request(request, offset=0, console=None,
|
||||
progress_func=None, write_func=None):
|
||||
# support partial downloads
|
||||
if offset > 0:
|
||||
request.add_header('Range', "bytes=%s-" % offset)
|
||||
|
||||
try:
|
||||
response = urlopen(request)
|
||||
except HTTPError as e:
|
||||
if e.code == 416: # Requested Range Not Satisfiable
|
||||
raise InvalidOffsetException
|
||||
|
||||
# TODO add http error handling here
|
||||
raise UnsupportedHTTPCodeException(e.code)
|
||||
|
||||
total_size = get_content_length(response) + offset
|
||||
bytes_read = offset
|
||||
|
||||
# sanity checks
|
||||
if response.code == 200: # OK
|
||||
assert offset == 0
|
||||
elif response.code == 206: # Partial content
|
||||
range_start, range_end, range_total = get_content_range(response)
|
||||
assert range_start == offset
|
||||
assert range_total == total_size
|
||||
assert range_end + 1 - range_start == total_size - bytes_read
|
||||
else:
|
||||
raise UnsupportedHTTPCodeException(response.code)
|
||||
|
||||
eta = TimeEstimator()
|
||||
transfer_rate = RateSampler()
|
||||
|
||||
if console:
|
||||
if offset > 0:
|
||||
console.write("Continue downloading...\n")
|
||||
else:
|
||||
console.write("Downloading...\n")
|
||||
|
||||
while True:
|
||||
with transfer_rate:
|
||||
chunk = response.read(CHUNK_SIZE)
|
||||
if not chunk:
|
||||
if progress_func and console:
|
||||
console.write('\n')
|
||||
break
|
||||
|
||||
bytes_read += len(chunk)
|
||||
|
||||
transfer_rate.update(len(chunk))
|
||||
eta.update(bytes_read - offset, total_size - offset)
|
||||
|
||||
if progress_func and console:
|
||||
progress_func(console, bytes_read, total_size, transfer_rate, eta)
|
||||
|
||||
if write_func:
|
||||
write_func(chunk)
|
||||
|
||||
response.close()
|
||||
assert bytes_read == total_size
|
||||
return response
|
||||
|
||||
|
||||
def download(url, path=".",
|
||||
checksum=None, checksum_header=None,
|
||||
headers=None, console=None):
|
||||
|
||||
if os.path.isdir(path):
|
||||
path = os.path.join(path, url.rsplit('/', 1)[1])
|
||||
path = os.path.abspath(path)
|
||||
|
||||
with io.open(path, "a+b") as f:
|
||||
size = f.tell()
|
||||
|
||||
# update checksum of partially downloaded file
|
||||
if checksum:
|
||||
f.seek(0, os.SEEK_SET)
|
||||
for chunk in iter(lambda: f.read(CHUNK_SIZE), b""):
|
||||
checksum.update(chunk)
|
||||
|
||||
def write(chunk):
|
||||
if checksum:
|
||||
checksum.update(chunk)
|
||||
f.write(chunk)
|
||||
|
||||
request = Request(url)
|
||||
|
||||
# request headers
|
||||
if headers:
|
||||
for key, value in headers.items():
|
||||
request.add_header(key, value)
|
||||
|
||||
try:
|
||||
response = read_request(request,
|
||||
offset=size,
|
||||
console=console,
|
||||
progress_func=progress,
|
||||
write_func=write)
|
||||
except InvalidOffsetException:
|
||||
response = None
|
||||
|
||||
if checksum:
|
||||
if response:
|
||||
origin_checksum = response.headers.get(checksum_header)
|
||||
else:
|
||||
# check whether file is already complete
|
||||
meta = get_url_meta(url, checksum_header)
|
||||
origin_checksum = meta.get('checksum')
|
||||
|
||||
if origin_checksum is None:
|
||||
raise MissingChecksumHeader
|
||||
|
||||
if checksum.hexdigest() != origin_checksum:
|
||||
raise InvalidChecksumException
|
||||
|
||||
if console:
|
||||
console.write("checksum/sha256 OK\n")
|
||||
|
||||
return path
|
|
@ -20,8 +20,6 @@ from .tokens.doc cimport get_token_attr
|
|||
from .tokens.doc cimport Doc
|
||||
from .vocab cimport Vocab
|
||||
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from .attrs import FLAG61 as U_ENT
|
||||
|
||||
from .attrs import FLAG60 as B2_ENT
|
||||
|
@ -221,8 +219,7 @@ cdef class Matcher:
|
|||
q = 0
|
||||
# Go over the open matches, extending or finalizing if able. Otherwise,
|
||||
# we over-write them (q doesn't advance)
|
||||
for i in range(partials.size()):
|
||||
state = partials.at(i)
|
||||
for state in partials:
|
||||
if match(state, token):
|
||||
if is_final(state):
|
||||
label, start, end = get_entity(state, token, token_i)
|
||||
|
@ -233,8 +230,7 @@ cdef class Matcher:
|
|||
q += 1
|
||||
partials.resize(q)
|
||||
# Check whether we open any new patterns on this token
|
||||
for i in range(self.n_patterns):
|
||||
state = self.patterns[i]
|
||||
for state in self.patterns:
|
||||
if match(state, token):
|
||||
if is_final(state):
|
||||
label, start, end = get_entity(state, token, token_i)
|
||||
|
@ -242,7 +238,16 @@ cdef class Matcher:
|
|||
matches.append((label, start, end))
|
||||
else:
|
||||
partials.push_back(state + 1)
|
||||
doc.ents = [(e.label, e.start, e.end) for e in doc.ents] + matches
|
||||
seen = set()
|
||||
filtered = []
|
||||
for label, start, end in sorted(matches, key=lambda m: (m[1], -(m[1] - m[2]))):
|
||||
if all(i in seen for i in range(start, end)):
|
||||
continue
|
||||
else:
|
||||
for i in range(start, end):
|
||||
seen.add(i)
|
||||
filtered.append((label, start, end))
|
||||
doc.ents = [(e.label, e.start, e.end) for e in doc.ents] + filtered
|
||||
return matches
|
||||
|
||||
|
||||
|
|
|
@ -72,6 +72,10 @@ cdef class Tokenizer:
|
|||
Returns:
|
||||
tokens (Doc): A Doc object, giving access to a sequence of LexemeCs.
|
||||
"""
|
||||
if len(string) >= (2 ** 30):
|
||||
raise ValueError(
|
||||
"String is too long: %d characters. Max is 2**30." % len(string)
|
||||
)
|
||||
cdef int length = len(string)
|
||||
cdef Doc tokens = Doc(self.vocab)
|
||||
if length == 0:
|
||||
|
|
|
@ -447,9 +447,9 @@ cdef class Doc:
|
|||
|
||||
cdef Span span = self[start:end]
|
||||
# Get LexemeC for newly merged token
|
||||
new_orth = ''.join([t.string for t in span])
|
||||
new_orth = ''.join([t.text_with_ws for t in span])
|
||||
if span[-1].whitespace_:
|
||||
new_orth = new_orth[:-1]
|
||||
new_orth = new_orth[:-len(span[-1].whitespace_)]
|
||||
cdef const LexemeC* lex = self.vocab.get(self.mem, new_orth)
|
||||
# House the new merged token where it starts
|
||||
cdef TokenC* token = &self.data[start]
|
||||
|
@ -508,16 +508,26 @@ cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
|
|||
cdef TokenC* head
|
||||
cdef TokenC* child
|
||||
cdef int i
|
||||
# Set number of left/right children to 0. We'll increment it in the loops.
|
||||
for i in range(length):
|
||||
tokens[i].l_kids = 0
|
||||
tokens[i].r_kids = 0
|
||||
tokens[i].l_edge = i
|
||||
tokens[i].r_edge = i
|
||||
# Set left edges
|
||||
for i in range(length):
|
||||
child = &tokens[i]
|
||||
head = &tokens[i + child.head]
|
||||
if child < head and child.l_edge < head.l_edge:
|
||||
if child < head:
|
||||
if child.l_edge < head.l_edge:
|
||||
head.l_edge = child.l_edge
|
||||
head.l_kids += 1
|
||||
|
||||
# Set right edges --- same as above, but iterate in reverse
|
||||
for i in range(length-1, -1, -1):
|
||||
child = &tokens[i]
|
||||
head = &tokens[i + child.head]
|
||||
if child > head and child.r_edge > head.r_edge:
|
||||
if child > head:
|
||||
if child.r_edge > head.r_edge:
|
||||
head.r_edge = child.r_edge
|
||||
|
||||
head.r_kids += 1
|
||||
|
|
|
@ -278,7 +278,7 @@ cdef class Token:
|
|||
|
||||
property whitespace_:
|
||||
def __get__(self):
|
||||
return self.string[self.c.lex.length:]
|
||||
return ' ' if self.c.spacy else ''
|
||||
|
||||
property orth_:
|
||||
def __get__(self):
|
||||
|
|
|
@ -1,17 +1,102 @@
|
|||
import pytest
|
||||
|
||||
|
||||
from spacy.matcher import Matcher
|
||||
from spacy.attrs import LOWER
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
def test_overlap_issue118(EN):
|
||||
'''Test a bug that arose from having overlapping matches'''
|
||||
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
|
||||
ORG = doc.vocab.strings['ORG']
|
||||
matcher = Matcher(EN.vocab, {'BostonCeltics': ('ORG', {}, [[{'lower': 'boston'}, {'lower': 'celtics'}], [{'lower': 'celtics'}]])})
|
||||
matcher = Matcher(EN.vocab,
|
||||
{'BostonCeltics':
|
||||
('ORG', {},
|
||||
[
|
||||
[{LOWER: 'celtics'}],
|
||||
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
|
||||
]
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
assert len(list(doc.ents)) == 0
|
||||
matches = matcher(doc)
|
||||
assert matches == [(ORG, 9, 11)]
|
||||
assert matches == [(ORG, 9, 11), (ORG, 10, 11)]
|
||||
ents = list(doc.ents)
|
||||
assert len(ents) == 1
|
||||
assert ents[0].label == ORG
|
||||
assert ents[0].start == 9
|
||||
assert ents[0].end == 11
|
||||
|
||||
|
||||
def test_overlap_reorder(EN):
|
||||
'''Test order dependence'''
|
||||
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
|
||||
ORG = doc.vocab.strings['ORG']
|
||||
matcher = Matcher(EN.vocab,
|
||||
{'BostonCeltics':
|
||||
('ORG', {},
|
||||
[
|
||||
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
|
||||
[{LOWER: 'celtics'}],
|
||||
]
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
assert len(list(doc.ents)) == 0
|
||||
matches = matcher(doc)
|
||||
assert matches == [(ORG, 9, 11), (ORG, 10, 11)]
|
||||
ents = list(doc.ents)
|
||||
assert len(ents) == 1
|
||||
assert ents[0].label == ORG
|
||||
assert ents[0].start == 9
|
||||
assert ents[0].end == 11
|
||||
|
||||
|
||||
def test_overlap_prefix(EN):
|
||||
'''Test order dependence'''
|
||||
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
|
||||
ORG = doc.vocab.strings['ORG']
|
||||
matcher = Matcher(EN.vocab,
|
||||
{'BostonCeltics':
|
||||
('ORG', {},
|
||||
[
|
||||
[{LOWER: 'boston'}],
|
||||
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
|
||||
]
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
assert len(list(doc.ents)) == 0
|
||||
matches = matcher(doc)
|
||||
assert matches == [(ORG, 9, 10), (ORG, 9, 11)]
|
||||
ents = list(doc.ents)
|
||||
assert len(ents) == 1
|
||||
assert ents[0].label == ORG
|
||||
assert ents[0].start == 9
|
||||
assert ents[0].end == 11
|
||||
|
||||
|
||||
def test_overlap_prefix_reorder(EN):
|
||||
'''Test order dependence'''
|
||||
doc = EN.tokenizer(u'how many points did lebron james score against the boston celtics last night')
|
||||
ORG = doc.vocab.strings['ORG']
|
||||
matcher = Matcher(EN.vocab,
|
||||
{'BostonCeltics':
|
||||
('ORG', {},
|
||||
[
|
||||
[{LOWER: 'boston'}, {LOWER: 'celtics'}],
|
||||
[{LOWER: 'boston'}],
|
||||
]
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
assert len(list(doc.ents)) == 0
|
||||
matches = matcher(doc)
|
||||
assert matches == [(ORG, 9, 10), (ORG, 9, 11)]
|
||||
ents = list(doc.ents)
|
||||
assert len(ents) == 1
|
||||
assert ents[0].label == ORG
|
||||
|
|
|
@ -7,6 +7,10 @@ def test_hyphen(en_tokenizer):
|
|||
assert len(tokens) == 3
|
||||
|
||||
|
||||
def test_numeric_range(en_tokenizer):
|
||||
tokens = en_tokenizer('0.1-13.5')
|
||||
assert len(tokens) == 3
|
||||
|
||||
def test_period(en_tokenizer):
|
||||
tokens = en_tokenizer('best.Known')
|
||||
assert len(tokens) == 3
|
||||
|
|
|
@ -109,3 +109,42 @@ def test_set_ents(EN):
|
|||
assert ent.label_ == 'PRODUCT'
|
||||
assert ent.start == 2
|
||||
assert ent.end == 4
|
||||
|
||||
|
||||
def test_merge(EN):
|
||||
doc = EN('WKRO played songs by the beach boys all night')
|
||||
|
||||
assert len(doc) == 9
|
||||
# merge 'The Beach Boys'
|
||||
doc.merge(doc[4].idx, doc[6].idx + len(doc[6]), 'NAMED', 'LEMMA', 'TYPE')
|
||||
assert len(doc) == 7
|
||||
|
||||
assert doc[4].text == 'the beach boys'
|
||||
assert doc[4].text_with_ws == 'the beach boys '
|
||||
assert doc[4].tag_ == 'NAMED'
|
||||
|
||||
|
||||
def test_merge_end_string(EN):
|
||||
doc = EN('WKRO played songs by the beach boys all night')
|
||||
|
||||
assert len(doc) == 9
|
||||
# merge 'The Beach Boys'
|
||||
doc.merge(doc[7].idx, doc[8].idx + len(doc[8]), 'NAMED', 'LEMMA', 'TYPE')
|
||||
assert len(doc) == 8
|
||||
|
||||
assert doc[7].text == 'all night'
|
||||
assert doc[7].text_with_ws == 'all night'
|
||||
|
||||
|
||||
@pytest.mark.models
|
||||
def test_merge_children(EN):
|
||||
"""Test that attachments work correctly after merging."""
|
||||
doc = EN('WKRO played songs by the beach boys all night')
|
||||
# merge 'The Beach Boys'
|
||||
doc.merge(doc[4].idx, doc[6].idx + len(doc[6]), 'NAMED', 'LEMMA', 'TYPE')
|
||||
|
||||
for word in doc:
|
||||
if word.i < word.head.i:
|
||||
assert word in list(word.head.lefts)
|
||||
elif word.i > word.head.i:
|
||||
assert word in list(word.head.rights)
|
||||
|
|
|
@ -1,8 +1,11 @@
|
|||
#!/usr/bin/env python
|
||||
import sys
|
||||
import re
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import os
|
||||
import ast
|
||||
import io
|
||||
|
||||
import plac
|
||||
|
||||
# cgi.escape is deprecated since py32
|
||||
try:
|
||||
|
@ -11,18 +14,20 @@ except ImportError:
|
|||
from cgi import escape
|
||||
|
||||
|
||||
src_dirname = sys.argv[1]
|
||||
dst_dirname = sys.argv[2]
|
||||
prefix = "test_"
|
||||
# e.g. python website/create_code_samples tests/website/ website/src/
|
||||
def main(src_dirname, dst_dirname):
|
||||
prefix = "test_"
|
||||
|
||||
|
||||
for filename in os.listdir(src_dirname):
|
||||
match = re.match(re.escape(prefix) + r"(.+)\.py$", filename)
|
||||
if not match:
|
||||
for filename in os.listdir(src_dirname):
|
||||
if not filename.startswith('test_'):
|
||||
continue
|
||||
if not filename.endswith('.py'):
|
||||
continue
|
||||
|
||||
name = match.group(1)
|
||||
source = open(os.path.join(src_dirname, filename)).readlines()
|
||||
# Remove test_ prefix and .py suffix
|
||||
name = filename[6:-3]
|
||||
with io.open(os.path.join(src_dirname, filename), 'r', encoding='utf8') as file_:
|
||||
source = file_.readlines()
|
||||
tree = ast.parse("".join(source))
|
||||
|
||||
for root in tree.body:
|
||||
|
@ -61,5 +66,10 @@ for filename in os.listdir(src_dirname):
|
|||
|
||||
code_filename = "%s.%s" % (name, root.name[len(prefix):])
|
||||
|
||||
with open(os.path.join(dst_dirname, code_filename), "w") as f:
|
||||
with io.open(os.path.join(dst_dirname, code_filename),
|
||||
"w", encoding='utf8') as f:
|
||||
f.write(escape("".join(body)))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
||||
|
|
Loading…
Reference in New Issue
Block a user