mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-24 17:06:29 +03:00
Merge branch 'develop' into feature/language-data-config
This commit is contained in:
commit
14d7d46f89
|
@ -25,7 +25,7 @@ def debug_model_cli(
|
|||
P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
|
||||
P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
|
||||
P3: bool = Opt(True, "--print-step3", "-P3", help="Print final predictions"),
|
||||
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="GPU ID or -1 for CPU")
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -36,7 +36,7 @@ def pretrain_cli(
|
|||
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||||
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
|
||||
epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using '--resume_path'. Prevents unintended overwriting of existing weight files."),
|
||||
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="GPU ID or -1 for CPU"),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -36,7 +36,7 @@ def train_cli(
|
|||
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"),
|
||||
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||||
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="GPU ID or -1 for CPU"),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
||||
resume: bool = Opt(False, "--resume", "-R", help="Resume training"),
|
||||
# fmt: on
|
||||
):
|
||||
|
@ -518,7 +518,7 @@ def verify_config(nlp: Language) -> None:
|
|||
# in config["nlp"]["pipeline"] instead?
|
||||
for pipe_config in nlp.config["components"].values():
|
||||
# We can't assume that the component name == the factory
|
||||
factory = pipe_config["@factories"]
|
||||
factory = pipe_config["factory"]
|
||||
if factory == "textcat":
|
||||
verify_textcat_config(nlp, pipe_config)
|
||||
|
||||
|
|
|
@ -561,9 +561,9 @@ class Errors:
|
|||
"into {values}, but found {value}.")
|
||||
E983 = ("Invalid key for '{dict}': {key}. Available keys: "
|
||||
"{keys}")
|
||||
E984 = ("Invalid component config for '{name}': no @factories key "
|
||||
E984 = ("Invalid component config for '{name}': no 'factory' key "
|
||||
"specifying the registered function used to initialize the "
|
||||
"component. For example, @factories = \"ner\" will use the 'ner' "
|
||||
"component. For example, factory = \"ner\" will use the 'ner' "
|
||||
"factory and all other settings in the block will be passed "
|
||||
"to it as arguments.\n\n{config}")
|
||||
E985 = ("Can't load model from config file: no 'nlp' section found.\n\n{config}")
|
||||
|
|
|
@ -171,7 +171,7 @@ class Language:
|
|||
for pipe_name in self.pipe_names:
|
||||
pipe_meta = self.get_pipe_meta(pipe_name)
|
||||
pipe_config = self.get_pipe_config(pipe_name)
|
||||
pipeline[pipe_name] = {"@factories": pipe_meta.factory, **pipe_config}
|
||||
pipeline[pipe_name] = {"factory": pipe_meta.factory, **pipe_config}
|
||||
self._config["nlp"]["pipeline"] = self.pipe_names
|
||||
self._config["components"] = pipeline
|
||||
if not srsly.is_json_serializable(self._config):
|
||||
|
@ -477,7 +477,7 @@ class Language:
|
|||
# pipeline component and why it failed, explain default config
|
||||
resolved, filled = registry.resolve(cfg, validate=validate, overrides=overrides)
|
||||
filled = filled[factory_name]
|
||||
filled["@factories"] = factory_name
|
||||
filled["factory"] = factory_name
|
||||
self._pipe_configs[name] = filled
|
||||
return resolved[factory_name]
|
||||
|
||||
|
@ -1270,12 +1270,12 @@ class Language:
|
|||
if pipe_name not in pipeline:
|
||||
opts = ", ".join(pipeline.keys())
|
||||
raise ValueError(Errors.E956.format(name=pipe_name, opts=opts))
|
||||
pipe_cfg = pipeline[pipe_name]
|
||||
pipe_cfg = util.copy_config(pipeline[pipe_name])
|
||||
if pipe_name not in disable:
|
||||
if "@factories" not in pipe_cfg:
|
||||
if "factory" not in pipe_cfg:
|
||||
err = Errors.E984.format(name=pipe_name, config=pipe_cfg)
|
||||
raise ValueError(err)
|
||||
factory = pipe_cfg["@factories"]
|
||||
factory = pipe_cfg.pop("factory")
|
||||
# The pipe name (key in the config) here is the unique name of the
|
||||
# component, not necessarily the factory
|
||||
nlp.add_pipe(
|
||||
|
|
|
@ -20,7 +20,7 @@ pipeline = ["tok2vec", "tagger"]
|
|||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
@factories = "tok2vec"
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
|
@ -34,7 +34,7 @@ subword_features = true
|
|||
dropout = null
|
||||
|
||||
[components.tagger]
|
||||
@factories = "tagger"
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
|
@ -245,7 +245,7 @@ def test_serialize_config_language_specific():
|
|||
nlp.add_pipe(name, config={"foo": 100}, name="bar")
|
||||
pipe_config = nlp.config["components"]["bar"]
|
||||
assert pipe_config["foo"] == 100
|
||||
assert pipe_config["@factories"] == name
|
||||
assert pipe_config["factory"] == name
|
||||
|
||||
with make_tempdir() as d:
|
||||
nlp.to_disk(d)
|
||||
|
@ -255,7 +255,7 @@ def test_serialize_config_language_specific():
|
|||
assert nlp2.get_pipe_meta("bar").factory == name
|
||||
pipe_config = nlp2.config["components"]["bar"]
|
||||
assert pipe_config["foo"] == 100
|
||||
assert pipe_config["@factories"] == name
|
||||
assert pipe_config["factory"] == name
|
||||
|
||||
config = Config().from_str(nlp2.config.to_str())
|
||||
config["nlp"]["lang"] = "de"
|
||||
|
|
|
@ -5,10 +5,14 @@ source: spacy/pipeline/morphologizer.pyx
|
|||
new: 3
|
||||
---
|
||||
|
||||
A trainable pipeline component to predict morphological features. This class is
|
||||
a subclass of `Pipe` and follows the same API. The component is also available
|
||||
via the string name `"morphologizer"`. After initialization, it is typically
|
||||
added to the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
|
||||
A trainable pipeline component to predict morphological features and
|
||||
coarse-grained POS tags following the Universal Dependencies
|
||||
[UPOS](https://universaldependencies.org/u/pos/index.html) and
|
||||
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
|
||||
annotation guidelines. This class is a subclass of `Pipe` and follows the same
|
||||
API. The component is also available via the string name `"morphologizer"`.
|
||||
After initialization, it is typically added to the processing pipeline using
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
## Default config {#config}
|
||||
|
||||
|
@ -21,3 +25,322 @@ custom models, check out the [training config](/usage/training#config) docs.
|
|||
```python
|
||||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/morphologizer_defaults.cfg
|
||||
```
|
||||
|
||||
## Morphologizer.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Initialize the morphologizer.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via create_pipe
|
||||
> morphologizer = nlp.create_pipe("morphologizer")
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy.pipeline import Morphologizer
|
||||
> morphologizer = Morphologizer()
|
||||
> ```
|
||||
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.create_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | -------- | ------------------------------------------------------------------------------- |
|
||||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||||
| `model` | `Model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
||||
| `**cfg` | - | Configuration parameters. |
|
||||
| **RETURNS** | `Morphologizer` | The newly constructed object. |
|
||||
|
||||
## Morphologizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe) delegate to the
|
||||
[`predict`](/api/morphologizer#predict) and
|
||||
[`set_annotations`](/api/morphologizer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> doc = nlp("This is a sentence.")
|
||||
> # This usually happens under the hood
|
||||
> processed = morphologizer(doc)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------ |
|
||||
| `doc` | `Doc` | The document to process. |
|
||||
| **RETURNS** | `Doc` | The processed document. |
|
||||
|
||||
## Morphologizer.pipe {#pipe tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
|
||||
[`pipe`](/api/morphologizer#pipe) delegate to the [`predict`](/api/morphologizer#predict) and
|
||||
[`set_annotations`](/api/morphologizer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> for doc in morphologizer.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | --------------- | ------------------------------------------------------ |
|
||||
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
||||
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
||||
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
||||
|
||||
## Morphologizer.predict {#predict tag="method"}
|
||||
|
||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> scores = morphologizer.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | --------------- | ----------------------------------------- |
|
||||
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
||||
| **RETURNS** | - | The model's prediction for each document. |
|
||||
|
||||
## Morphologizer.set_annotations {#set_annotations tag="method"}
|
||||
|
||||
Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> scores = morphologizer.predict([doc1, doc2])
|
||||
> morphologizer.set_annotations([doc1, doc2], scores)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------- | --------------- | ------------------------------------------------ |
|
||||
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
||||
| `scores` | - | The scores to set, produced by `Morphologizer.predict`. |
|
||||
|
||||
## Morphologizer.update {#update tag="method"}
|
||||
|
||||
Learn from a batch of documents and gold-standard information, updating the
|
||||
pipe's model. Delegates to [`predict`](/api/morphologizer#predict) and
|
||||
[`get_loss`](/api/morphologizer#get_loss).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab, morphologizer_model)
|
||||
> optimizer = nlp.begin_training()
|
||||
> losses = morphologizer.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
||||
| _keyword-only_ | | |
|
||||
| `drop` | float | The dropout rate. |
|
||||
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/morphologizer#set_annotations). |
|
||||
| `sgd` | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
|
||||
| `losses` | `Dict[str, float]` | Optional record of the loss during training. The value keyed by the model's name is updated. |
|
||||
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
||||
|
||||
## Morphologizer.get_loss {#get_loss tag="method"}
|
||||
|
||||
Find the loss and gradient of loss for the batch of documents and their
|
||||
predicted scores.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> scores = morphologizer.predict([eg.predicted for eg in examples])
|
||||
> loss, d_loss = morphologizer.get_loss(examples, scores)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | --------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The batch of examples. |
|
||||
| `scores` | - | Scores representing the model's predictions. |
|
||||
| **RETURNS** | tuple | The loss and the gradient, i.e. `(loss, gradient)`. |
|
||||
|
||||
## Morphologizer.begin_training {#begin_training tag="method"}
|
||||
|
||||
Initialize the pipe for training, using data examples if available. Return an
|
||||
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> nlp.pipeline.append(morphologizer)
|
||||
> optimizer = morphologizer.begin_training(pipeline=nlp.pipeline)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | ----------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | `Iterable[Example]` | Optional gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
||||
| `pipeline` | `List[(str, callable)]` | Optional list of pipeline components that this component is part of. |
|
||||
| `sgd` | `Optimizer` | An optional [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Will be created via [`create_optimizer`](/api/morphologizer#create_optimizer) if not set. |
|
||||
| **RETURNS** | `Optimizer` | An optimizer. |
|
||||
|
||||
## Morphologizer.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> optimizer = morphologizer.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----------- | --------------------------------------------------------------- |
|
||||
| **RETURNS** | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
|
||||
|
||||
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model, to use the given parameter values.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> with morphologizer.use_params():
|
||||
> morphologizer.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
|
||||
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
|
||||
|
||||
## Morphologizer.add_label {#add_label tag="method"}
|
||||
|
||||
Add a new label to the pipe. If the `Morphologizer` should set annotations for
|
||||
both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------- | ---- | --------------------------------------------------------------- |
|
||||
| `label` | str | The label to add. |
|
||||
|
||||
## Morphologizer.to_disk {#to_disk tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.to_disk("/path/to/morphologizer")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| --------- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
|
||||
## Morphologizer.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.from_disk("/path/to/morphologizer")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------ | -------------------------------------------------------------------------- |
|
||||
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Morphologizer` | The modified `Morphologizer` object. |
|
||||
|
||||
## Morphologizer.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer_bytes = morphologizer.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------------------------------------------------------- |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | bytes | The serialized form of the `Morphologizer` object. |
|
||||
|
||||
## Morphologizer.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer_bytes = morphologizer.to_bytes()
|
||||
> morphologizer = Morphologizer(nlp.vocab)
|
||||
> morphologizer.from_bytes(morphologizer_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | -------- | ------------------------------------------------------------------------- |
|
||||
| `bytes_data` | bytes | The data to load from. |
|
||||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Morphologizer` | The `Morphologizer` object. |
|
||||
|
||||
## Morphologizer.labels {#labels tag="property"}
|
||||
|
||||
The labels currently added to the component in Universal Dependencies [FEATS
|
||||
format](https://universaldependencies.org/format.html#morphological-annotation).
|
||||
Note that even for a blank component, this will always include the internal
|
||||
empty label `_`. If POS features are used, the labels will include the
|
||||
coarse-grained POS as the feature `POS`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
|
||||
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ---------------------------------- |
|
||||
| **RETURNS** | tuple | The labels added to the component. |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = morphologizer.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------- | ------------------------------------------------------------------------------------------ |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
|
|
Loading…
Reference in New Issue
Block a user