mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Merge branch 'develop' into feature/language-data-config
This commit is contained in:
		
						commit
						14d7d46f89
					
				| 
						 | 
				
			
			@ -25,7 +25,7 @@ def debug_model_cli(
 | 
			
		|||
    P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
 | 
			
		||||
    P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
 | 
			
		||||
    P3: bool = Opt(True, "--print-step3", "-P3", help="Print final predictions"),
 | 
			
		||||
    use_gpu: int = Opt(-1, "--use-gpu", "-g", help="GPU ID or -1 for CPU")
 | 
			
		||||
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
 | 
			
		||||
    # fmt: on
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -36,7 +36,7 @@ def pretrain_cli(
 | 
			
		|||
    code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
			
		||||
    resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
 | 
			
		||||
    epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using '--resume_path'. Prevents unintended overwriting of existing weight files."),
 | 
			
		||||
    use_gpu: int = Opt(-1, "--use-gpu", "-g", help="GPU ID or -1 for CPU"),
 | 
			
		||||
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | 
			
		||||
    # fmt: on
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -36,7 +36,7 @@ def train_cli(
 | 
			
		|||
    output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"),
 | 
			
		||||
    code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
			
		||||
    verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
 | 
			
		||||
    use_gpu: int = Opt(-1, "--use-gpu", "-g", help="GPU ID or -1 for CPU"),
 | 
			
		||||
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | 
			
		||||
    resume: bool = Opt(False, "--resume", "-R", help="Resume training"),
 | 
			
		||||
    # fmt: on
 | 
			
		||||
):
 | 
			
		||||
| 
						 | 
				
			
			@ -518,7 +518,7 @@ def verify_config(nlp: Language) -> None:
 | 
			
		|||
    # in config["nlp"]["pipeline"] instead?
 | 
			
		||||
    for pipe_config in nlp.config["components"].values():
 | 
			
		||||
        # We can't assume that the component name == the factory
 | 
			
		||||
        factory = pipe_config["@factories"]
 | 
			
		||||
        factory = pipe_config["factory"]
 | 
			
		||||
        if factory == "textcat":
 | 
			
		||||
            verify_textcat_config(nlp, pipe_config)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -561,9 +561,9 @@ class Errors:
 | 
			
		|||
            "into {values}, but found {value}.")
 | 
			
		||||
    E983 = ("Invalid key for '{dict}': {key}. Available keys: "
 | 
			
		||||
            "{keys}")
 | 
			
		||||
    E984 = ("Invalid component config for '{name}': no @factories key "
 | 
			
		||||
    E984 = ("Invalid component config for '{name}': no 'factory' key "
 | 
			
		||||
            "specifying the registered function used to initialize the "
 | 
			
		||||
            "component. For example, @factories = \"ner\" will use the 'ner' "
 | 
			
		||||
            "component. For example, factory = \"ner\" will use the 'ner' "
 | 
			
		||||
            "factory and all other settings in the block will be passed "
 | 
			
		||||
            "to it as arguments.\n\n{config}")
 | 
			
		||||
    E985 = ("Can't load model from config file: no 'nlp' section found.\n\n{config}")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -171,7 +171,7 @@ class Language:
 | 
			
		|||
        for pipe_name in self.pipe_names:
 | 
			
		||||
            pipe_meta = self.get_pipe_meta(pipe_name)
 | 
			
		||||
            pipe_config = self.get_pipe_config(pipe_name)
 | 
			
		||||
            pipeline[pipe_name] = {"@factories": pipe_meta.factory, **pipe_config}
 | 
			
		||||
            pipeline[pipe_name] = {"factory": pipe_meta.factory, **pipe_config}
 | 
			
		||||
        self._config["nlp"]["pipeline"] = self.pipe_names
 | 
			
		||||
        self._config["components"] = pipeline
 | 
			
		||||
        if not srsly.is_json_serializable(self._config):
 | 
			
		||||
| 
						 | 
				
			
			@ -477,7 +477,7 @@ class Language:
 | 
			
		|||
        # pipeline component and why it failed, explain default config
 | 
			
		||||
        resolved, filled = registry.resolve(cfg, validate=validate, overrides=overrides)
 | 
			
		||||
        filled = filled[factory_name]
 | 
			
		||||
        filled["@factories"] = factory_name
 | 
			
		||||
        filled["factory"] = factory_name
 | 
			
		||||
        self._pipe_configs[name] = filled
 | 
			
		||||
        return resolved[factory_name]
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1270,12 +1270,12 @@ class Language:
 | 
			
		|||
            if pipe_name not in pipeline:
 | 
			
		||||
                opts = ", ".join(pipeline.keys())
 | 
			
		||||
                raise ValueError(Errors.E956.format(name=pipe_name, opts=opts))
 | 
			
		||||
            pipe_cfg = pipeline[pipe_name]
 | 
			
		||||
            pipe_cfg = util.copy_config(pipeline[pipe_name])
 | 
			
		||||
            if pipe_name not in disable:
 | 
			
		||||
                if "@factories" not in pipe_cfg:
 | 
			
		||||
                if "factory" not in pipe_cfg:
 | 
			
		||||
                    err = Errors.E984.format(name=pipe_name, config=pipe_cfg)
 | 
			
		||||
                    raise ValueError(err)
 | 
			
		||||
                factory = pipe_cfg["@factories"]
 | 
			
		||||
                factory = pipe_cfg.pop("factory")
 | 
			
		||||
                # The pipe name (key in the config) here is the unique name of the
 | 
			
		||||
                # component, not necessarily the factory
 | 
			
		||||
                nlp.add_pipe(
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,7 +20,7 @@ pipeline = ["tok2vec", "tagger"]
 | 
			
		|||
[components]
 | 
			
		||||
 | 
			
		||||
[components.tok2vec]
 | 
			
		||||
@factories = "tok2vec"
 | 
			
		||||
factory = "tok2vec"
 | 
			
		||||
 | 
			
		||||
[components.tok2vec.model]
 | 
			
		||||
@architectures = "spacy.HashEmbedCNN.v1"
 | 
			
		||||
| 
						 | 
				
			
			@ -34,7 +34,7 @@ subword_features = true
 | 
			
		|||
dropout = null
 | 
			
		||||
 | 
			
		||||
[components.tagger]
 | 
			
		||||
@factories = "tagger"
 | 
			
		||||
factory = "tagger"
 | 
			
		||||
 | 
			
		||||
[components.tagger.model]
 | 
			
		||||
@architectures = "spacy.Tagger.v1"
 | 
			
		||||
| 
						 | 
				
			
			@ -245,7 +245,7 @@ def test_serialize_config_language_specific():
 | 
			
		|||
    nlp.add_pipe(name, config={"foo": 100}, name="bar")
 | 
			
		||||
    pipe_config = nlp.config["components"]["bar"]
 | 
			
		||||
    assert pipe_config["foo"] == 100
 | 
			
		||||
    assert pipe_config["@factories"] == name
 | 
			
		||||
    assert pipe_config["factory"] == name
 | 
			
		||||
 | 
			
		||||
    with make_tempdir() as d:
 | 
			
		||||
        nlp.to_disk(d)
 | 
			
		||||
| 
						 | 
				
			
			@ -255,7 +255,7 @@ def test_serialize_config_language_specific():
 | 
			
		|||
    assert nlp2.get_pipe_meta("bar").factory == name
 | 
			
		||||
    pipe_config = nlp2.config["components"]["bar"]
 | 
			
		||||
    assert pipe_config["foo"] == 100
 | 
			
		||||
    assert pipe_config["@factories"] == name
 | 
			
		||||
    assert pipe_config["factory"] == name
 | 
			
		||||
 | 
			
		||||
    config = Config().from_str(nlp2.config.to_str())
 | 
			
		||||
    config["nlp"]["lang"] = "de"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -5,10 +5,14 @@ source: spacy/pipeline/morphologizer.pyx
 | 
			
		|||
new: 3
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
A trainable pipeline component to predict morphological features. This class is
 | 
			
		||||
a subclass of `Pipe` and follows the same API. The component is also available
 | 
			
		||||
via the string name `"morphologizer"`. After initialization, it is typically
 | 
			
		||||
added to the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
 | 
			
		||||
A trainable pipeline component to predict morphological features and
 | 
			
		||||
coarse-grained POS tags following the Universal Dependencies
 | 
			
		||||
[UPOS](https://universaldependencies.org/u/pos/index.html) and
 | 
			
		||||
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
 | 
			
		||||
annotation guidelines. This class is a subclass of `Pipe` and follows the same
 | 
			
		||||
API. The component is also available via the string name `"morphologizer"`.
 | 
			
		||||
After initialization, it is typically added to the processing pipeline using
 | 
			
		||||
[`nlp.add_pipe`](/api/language#add_pipe).
 | 
			
		||||
 | 
			
		||||
## Default config {#config}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -21,3 +25,322 @@ custom models, check out the [training config](/usage/training#config) docs.
 | 
			
		|||
```python
 | 
			
		||||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/morphologizer_defaults.cfg
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Morphologizer.\_\_init\_\_ {#init tag="method"}
 | 
			
		||||
 | 
			
		||||
Initialize the morphologizer.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> # Construction via create_pipe
 | 
			
		||||
> morphologizer = nlp.create_pipe("morphologizer")
 | 
			
		||||
>
 | 
			
		||||
> # Construction from class
 | 
			
		||||
> from spacy.pipeline import Morphologizer
 | 
			
		||||
> morphologizer = Morphologizer()
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Create a new pipeline instance. In your application, you would normally use a
 | 
			
		||||
shortcut for this and instantiate the component using its string name and
 | 
			
		||||
[`nlp.create_pipe`](/api/language#create_pipe).
 | 
			
		||||
 | 
			
		||||
| Name        | Type     | Description                                                                     |
 | 
			
		||||
| ----------- | -------- | ------------------------------------------------------------------------------- |
 | 
			
		||||
| `vocab`     | `Vocab`  | The shared vocabulary.                                                          |
 | 
			
		||||
| `model`     | `Model`  | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
 | 
			
		||||
| `**cfg`     | -        | Configuration parameters.                                                       |
 | 
			
		||||
| **RETURNS** | `Morphologizer` | The newly constructed object.                                                   |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.\_\_call\_\_ {#call tag="method"}
 | 
			
		||||
 | 
			
		||||
Apply the pipe to one document. The document is modified in place, and returned.
 | 
			
		||||
This usually happens under the hood when the `nlp` object is called on a text
 | 
			
		||||
and all pipeline components are applied to the `Doc` in order. Both
 | 
			
		||||
[`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe) delegate to the
 | 
			
		||||
[`predict`](/api/morphologizer#predict) and
 | 
			
		||||
[`set_annotations`](/api/morphologizer#set_annotations) methods.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> doc = nlp("This is a sentence.")
 | 
			
		||||
> # This usually happens under the hood
 | 
			
		||||
> processed = morphologizer(doc)
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name        | Type  | Description              |
 | 
			
		||||
| ----------- | ----- | ------------------------ |
 | 
			
		||||
| `doc`       | `Doc` | The document to process. |
 | 
			
		||||
| **RETURNS** | `Doc` | The processed document.  |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.pipe {#pipe tag="method"}
 | 
			
		||||
 | 
			
		||||
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
			
		||||
when the `nlp` object is called on a text and all pipeline components are
 | 
			
		||||
applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
 | 
			
		||||
[`pipe`](/api/morphologizer#pipe) delegate to the [`predict`](/api/morphologizer#predict) and
 | 
			
		||||
[`set_annotations`](/api/morphologizer#set_annotations) methods.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> for doc in morphologizer.pipe(docs, batch_size=50):
 | 
			
		||||
>     pass
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name         | Type            | Description                                            |
 | 
			
		||||
| ------------ | --------------- | ------------------------------------------------------ |
 | 
			
		||||
| `stream`     | `Iterable[Doc]` | A stream of documents.                                 |
 | 
			
		||||
| `batch_size` | int             | The number of texts to buffer. Defaults to `128`.      |
 | 
			
		||||
| **YIELDS**   | `Doc`           | Processed documents in the order of the original text. |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.predict {#predict tag="method"}
 | 
			
		||||
 | 
			
		||||
Apply the pipeline's model to a batch of docs, without modifying them.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> scores = morphologizer.predict([doc1, doc2])
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name        | Type            | Description                               |
 | 
			
		||||
| ----------- | --------------- | ----------------------------------------- |
 | 
			
		||||
| `docs`      | `Iterable[Doc]` | The documents to predict.                 |
 | 
			
		||||
| **RETURNS** | -               | The model's prediction for each document. |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.set_annotations {#set_annotations tag="method"}
 | 
			
		||||
 | 
			
		||||
Modify a batch of documents, using pre-computed scores.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> scores = morphologizer.predict([doc1, doc2])
 | 
			
		||||
> morphologizer.set_annotations([doc1, doc2], scores)
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name     | Type            | Description                                      |
 | 
			
		||||
| -------- | --------------- | ------------------------------------------------ |
 | 
			
		||||
| `docs`   | `Iterable[Doc]` | The documents to modify.                         |
 | 
			
		||||
| `scores` | -               | The scores to set, produced by `Morphologizer.predict`. |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.update {#update tag="method"}
 | 
			
		||||
 | 
			
		||||
Learn from a batch of documents and gold-standard information, updating the
 | 
			
		||||
pipe's model. Delegates to [`predict`](/api/morphologizer#predict) and
 | 
			
		||||
[`get_loss`](/api/morphologizer#get_loss).
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab, morphologizer_model)
 | 
			
		||||
> optimizer = nlp.begin_training()
 | 
			
		||||
> losses = morphologizer.update(examples, sgd=optimizer)
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name              | Type                | Description                                                                                                                          |
 | 
			
		||||
| ----------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
 | 
			
		||||
| `examples`        | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from.                                                                          |
 | 
			
		||||
| _keyword-only_    |                     |                                                                                                                                      |
 | 
			
		||||
| `drop`            | float               | The dropout rate.                                                                                                                    |
 | 
			
		||||
| `set_annotations` | bool                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/morphologizer#set_annotations). |
 | 
			
		||||
| `sgd`             | `Optimizer`         | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object.                                                                      |
 | 
			
		||||
| `losses`          | `Dict[str, float]`  | Optional record of the loss during training. The value keyed by the model's name is updated.                                         |
 | 
			
		||||
| **RETURNS**       | `Dict[str, float]`  | The updated `losses` dictionary.                                                                                                     |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.get_loss {#get_loss tag="method"}
 | 
			
		||||
 | 
			
		||||
Find the loss and gradient of loss for the batch of documents and their
 | 
			
		||||
predicted scores.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> scores = morphologizer.predict([eg.predicted for eg in examples])
 | 
			
		||||
> loss, d_loss = morphologizer.get_loss(examples, scores)
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name        | Type                | Description                                         |
 | 
			
		||||
| ----------- | ------------------- | --------------------------------------------------- |
 | 
			
		||||
| `examples`  | `Iterable[Example]` | The batch of examples.                              |
 | 
			
		||||
| `scores`    | -                   | Scores representing the model's predictions.        |
 | 
			
		||||
| **RETURNS** | tuple               | The loss and the gradient, i.e. `(loss, gradient)`. |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.begin_training {#begin_training tag="method"}
 | 
			
		||||
 | 
			
		||||
Initialize the pipe for training, using data examples if available. Return an
 | 
			
		||||
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> nlp.pipeline.append(morphologizer)
 | 
			
		||||
> optimizer = morphologizer.begin_training(pipeline=nlp.pipeline)
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name           | Type                    | Description                                                                                                                                                |
 | 
			
		||||
| -------------- | ----------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `get_examples` | `Iterable[Example]`     | Optional gold-standard annotations in the form of [`Example`](/api/example) objects.                                                                       |
 | 
			
		||||
| `pipeline`     | `List[(str, callable)]` | Optional list of pipeline components that this component is part of.                                                                                       |
 | 
			
		||||
| `sgd`          | `Optimizer`             | An optional [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Will be created via [`create_optimizer`](/api/morphologizer#create_optimizer) if not set. |
 | 
			
		||||
| **RETURNS**    | `Optimizer`             | An optimizer.                                                                                                                                              |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.create_optimizer {#create_optimizer tag="method"}
 | 
			
		||||
 | 
			
		||||
Create an optimizer for the pipeline component.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> optimizer = morphologizer.create_optimizer()
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name        | Type        | Description                                                     |
 | 
			
		||||
| ----------- | ----------- | --------------------------------------------------------------- |
 | 
			
		||||
| **RETURNS** | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
 | 
			
		||||
 | 
			
		||||
Modify the pipe's model, to use the given parameter values.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> with morphologizer.use_params():
 | 
			
		||||
>     morphologizer.to_disk("/best_model")
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name     | Type | Description                                                                                                |
 | 
			
		||||
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `params` | -    | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.add_label {#add_label tag="method"}
 | 
			
		||||
 | 
			
		||||
Add a new label to the pipe. If the `Morphologizer` should set annotations for
 | 
			
		||||
both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name     | Type | Description                                                     |
 | 
			
		||||
| -------- | ---- | --------------------------------------------------------------- |
 | 
			
		||||
| `label`  | str  | The label to add.                                               |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.to_disk {#to_disk tag="method"}
 | 
			
		||||
 | 
			
		||||
Serialize the pipe to disk.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> morphologizer.to_disk("/path/to/morphologizer")
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name      | Type         | Description                                                                                                           |
 | 
			
		||||
| --------- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `path`    | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | 
			
		||||
| `exclude` | list         | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.from_disk {#from_disk tag="method"}
 | 
			
		||||
 | 
			
		||||
Load the pipe from disk. Modifies the object in place and returns it.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> morphologizer.from_disk("/path/to/morphologizer")
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name        | Type         | Description                                                                |
 | 
			
		||||
| ----------- | ------------ | -------------------------------------------------------------------------- |
 | 
			
		||||
| `path`      | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | 
			
		||||
| `exclude`   | list         | String names of [serialization fields](#serialization-fields) to exclude.  |
 | 
			
		||||
| **RETURNS** | `Morphologizer`     | The modified `Morphologizer` object.                                              |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.to_bytes {#to_bytes tag="method"}
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> morphologizer_bytes = morphologizer.to_bytes()
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
Serialize the pipe to a bytestring.
 | 
			
		||||
 | 
			
		||||
| Name        | Type  | Description                                                               |
 | 
			
		||||
| ----------- | ----- | ------------------------------------------------------------------------- |
 | 
			
		||||
| `exclude`   | list  | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
			
		||||
| **RETURNS** | bytes | The serialized form of the `Morphologizer` object.                               |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.from_bytes {#from_bytes tag="method"}
 | 
			
		||||
 | 
			
		||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer_bytes = morphologizer.to_bytes()
 | 
			
		||||
> morphologizer = Morphologizer(nlp.vocab)
 | 
			
		||||
> morphologizer.from_bytes(morphologizer_bytes)
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name         | Type     | Description                                                               |
 | 
			
		||||
| ------------ | -------- | ------------------------------------------------------------------------- |
 | 
			
		||||
| `bytes_data` | bytes    | The data to load from.                                                    |
 | 
			
		||||
| `exclude`    | list     | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
			
		||||
| **RETURNS**  | `Morphologizer` | The `Morphologizer` object.                                                      |
 | 
			
		||||
 | 
			
		||||
## Morphologizer.labels {#labels tag="property"}
 | 
			
		||||
 | 
			
		||||
The labels currently added to the component in Universal Dependencies [FEATS
 | 
			
		||||
format](https://universaldependencies.org/format.html#morphological-annotation).
 | 
			
		||||
Note that even for a blank component, this will always include the internal
 | 
			
		||||
empty label `_`. If POS features are used, the labels will include the
 | 
			
		||||
coarse-grained POS as the feature `POS`.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
 | 
			
		||||
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name        | Type  | Description                        |
 | 
			
		||||
| ----------- | ----- | ---------------------------------- |
 | 
			
		||||
| **RETURNS** | tuple | The labels added to the component. |
 | 
			
		||||
 | 
			
		||||
## Serialization fields {#serialization-fields}
 | 
			
		||||
 | 
			
		||||
During serialization, spaCy will export several data fields used to restore
 | 
			
		||||
different aspects of the object. If needed, you can exclude them from
 | 
			
		||||
serialization by passing in the string names via the `exclude` argument.
 | 
			
		||||
 | 
			
		||||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> data = morphologizer.to_disk("/path", exclude=["vocab"])
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name      | Description                                                                                |
 | 
			
		||||
| --------- | ------------------------------------------------------------------------------------------ |
 | 
			
		||||
| `vocab`   | The shared [`Vocab`](/api/vocab).                                                          |
 | 
			
		||||
| `cfg`     | The config file. You usually don't want to exclude this.                                   |
 | 
			
		||||
| `model`   | The binary model data. You usually don't want to exclude this.                             |
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user