mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-18 12:12:20 +03:00
conflict
This commit is contained in:
commit
150e7c46d7
|
@ -37,14 +37,11 @@ def build_wl_coref_model(
|
|||
except ValueError:
|
||||
# happens with transformer listener
|
||||
dim = 768
|
||||
|
||||
|
||||
with Model.define_operators({">>": chain}):
|
||||
# TODO chain tok2vec with these models
|
||||
# TODO fix device - should be automatic
|
||||
device = "cuda:0"
|
||||
coref_scorer = PyTorchWrapper(
|
||||
CorefScorer(
|
||||
device,
|
||||
dim,
|
||||
embedding_size,
|
||||
hidden_size,
|
||||
|
@ -64,7 +61,6 @@ def build_wl_coref_model(
|
|||
# TODO this was hardcoded to 1024, check
|
||||
hidden_size,
|
||||
sp_embedding_size,
|
||||
device
|
||||
),
|
||||
|
||||
convert_inputs=convert_span_predictor_inputs
|
||||
|
@ -266,7 +262,6 @@ class CorefScorer(torch.nn.Module):
|
|||
"""
|
||||
def __init__(
|
||||
self,
|
||||
device: str,
|
||||
dim: int, # tok2vec size
|
||||
dist_emb_size: int,
|
||||
hidden_size: int,
|
||||
|
@ -283,8 +278,7 @@ class CorefScorer(torch.nn.Module):
|
|||
epochs_trained (int): the number of epochs finished
|
||||
(useful for warm start)
|
||||
"""
|
||||
# device, dist_emb_size, hidden_size, n_layers, dropout_rate
|
||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate).to(device)
|
||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate)
|
||||
#TODO clean this up
|
||||
bert_emb = dim
|
||||
pair_emb = bert_emb * 3 + self.pw.shape
|
||||
|
@ -293,7 +287,7 @@ class CorefScorer(torch.nn.Module):
|
|||
hidden_size,
|
||||
n_layers,
|
||||
dropout_rate
|
||||
).to(device)
|
||||
)
|
||||
self.lstm = torch.nn.LSTM(
|
||||
input_size=bert_emb,
|
||||
hidden_size=bert_emb,
|
||||
|
@ -304,7 +298,7 @@ class CorefScorer(torch.nn.Module):
|
|||
bert_emb,
|
||||
dropout_rate,
|
||||
roughk
|
||||
).to(device)
|
||||
)
|
||||
self.batch_size = batch_size
|
||||
|
||||
def forward(
|
||||
|
@ -453,7 +447,6 @@ class AnaphoricityScorer(torch.nn.Module):
|
|||
return out
|
||||
|
||||
|
||||
|
||||
class RoughScorer(torch.nn.Module):
|
||||
"""
|
||||
Is needed to give a roughly estimate of the anaphoricity of two candidates,
|
||||
|
@ -484,7 +477,6 @@ class RoughScorer(torch.nn.Module):
|
|||
pair_mask = torch.arange(mentions.shape[0])
|
||||
pair_mask = pair_mask.unsqueeze(1) - pair_mask.unsqueeze(0)
|
||||
pair_mask = torch.log((pair_mask > 0).to(torch.float))
|
||||
pair_mask = pair_mask.to(mentions.device)
|
||||
bilinear_scores = self.dropout(self.bilinear(mentions)).mm(mentions.T)
|
||||
rough_scores = pair_mask + bilinear_scores
|
||||
|
||||
|
@ -511,7 +503,7 @@ class RoughScorer(torch.nn.Module):
|
|||
|
||||
|
||||
class SpanPredictor(torch.nn.Module):
|
||||
def __init__(self, input_size: int, distance_emb_size: int, device):
|
||||
def __init__(self, input_size: int, distance_emb_size: int):
|
||||
super().__init__()
|
||||
self.ffnn = torch.nn.Sequential(
|
||||
torch.nn.Linear(input_size * 2 + 64, input_size),
|
||||
|
@ -522,7 +514,6 @@ class SpanPredictor(torch.nn.Module):
|
|||
torch.nn.Dropout(0.3),
|
||||
torch.nn.Linear(256, 64),
|
||||
)
|
||||
self.device = device
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv1d(64, 4, 3, 1, 1),
|
||||
torch.nn.Conv1d(4, 2, 3, 1, 1)
|
||||
|
@ -600,17 +591,10 @@ class DistancePairwiseEncoder(torch.nn.Module):
|
|||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.shape = emb_size
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
""" A workaround to get current device (which is assumed to be the
|
||||
device of the first parameter of one of the submodules) """
|
||||
return next(self.distance_emb.parameters()).device
|
||||
|
||||
|
||||
def forward(self, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch
|
||||
top_indices: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
word_ids = torch.arange(0, top_indices.size(0), device=self.device)
|
||||
word_ids = torch.arange(0, top_indices.size(0))
|
||||
distance = (word_ids.unsqueeze(1) - word_ids[top_indices]
|
||||
).clamp_min_(min=1)
|
||||
log_distance = distance.to(torch.float).log2().floor_()
|
||||
|
|
Loading…
Reference in New Issue
Block a user