diff --git a/spacy/lang/sr/lex_attrs.py b/spacy/lang/sr/lex_attrs.py index dc48909bc..a356a6a7a 100644 --- a/spacy/lang/sr/lex_attrs.py +++ b/spacy/lang/sr/lex_attrs.py @@ -1,4 +1,4 @@ -from ...attrs import LIKE_NUM +from ...attrs import LIKE_NUM, NORM, PREFIX, SUFFIX _num_words = [ @@ -63,4 +63,55 @@ def like_num(text): return False -LEX_ATTRS = {LIKE_NUM: like_num} +def _cyr_to_latin_norm(text): + # fmt: off + # source: https://github.com/opendatakosovo/cyrillic-transliteration/blob/v1.1.1/cyrtranslit/mapping.py + SR_CYR_TO_LAT_DICT = { + u'А': u'A', u'а': u'a', + u'Б': u'B', u'б': u'b', + u'В': u'V', u'в': u'v', + u'Г': u'G', u'г': u'g', + u'Д': u'D', u'д': u'd', + u'Ђ': u'Đ', u'ђ': u'đ', + u'Е': u'E', u'е': u'e', + u'Ж': u'Ž', u'ж': u'ž', + u'З': u'Z', u'з': u'z', + u'И': u'I', u'и': u'i', + u'Ј': u'J', u'ј': u'j', + u'К': u'K', u'к': u'k', + u'Л': u'L', u'л': u'l', + u'Љ': u'Lj', u'љ': u'lj', + u'М': u'M', u'м': u'm', + u'Н': u'N', u'н': u'n', + u'Њ': u'Nj', u'њ': u'nj', + u'О': u'O', u'о': u'o', + u'П': u'P', u'п': u'p', + u'Р': u'R', u'р': u'r', + u'С': u'S', u'с': u's', + u'Т': u'T', u'т': u't', + u'Ћ': u'Ć', u'ћ': u'ć', + u'У': u'U', u'у': u'u', + u'Ф': u'F', u'ф': u'f', + u'Х': u'H', u'х': u'h', + u'Ц': u'C', u'ц': u'c', + u'Ч': u'Č', u'ч': u'č', + u'Џ': u'Dž', u'џ': u'dž', + u'Ш': u'Š', u'ш': u'š', + } + # fmt: on + return "".join(SR_CYR_TO_LAT_DICT.get(c, c) for c in text) + + +def norm(text): + return _cyr_to_latin_norm(text).lower() + + +def prefix(text): + return _cyr_to_latin_norm(text)[0] + + +def suffix(text): + return _cyr_to_latin_norm(text)[-3:] + + +LEX_ATTRS = {LIKE_NUM: like_num, NORM: norm, PREFIX: prefix, SUFFIX: suffix} diff --git a/spacy/lang/sr/tokenizer_exceptions.py b/spacy/lang/sr/tokenizer_exceptions.py index dcaa3e239..053306088 100755 --- a/spacy/lang/sr/tokenizer_exceptions.py +++ b/spacy/lang/sr/tokenizer_exceptions.py @@ -1,3 +1,4 @@ +from .lex_attrs import _cyr_to_latin_norm from ..tokenizer_exceptions import BASE_EXCEPTIONS from ...symbols import ORTH, NORM from ...util import update_exc @@ -89,5 +90,7 @@ _slang_exc = [ for slang_desc in _slang_exc: _exc[slang_desc[ORTH]] = [slang_desc] +for _exc_key in _exc: + _exc[_exc_key][0][NORM] = _cyr_to_latin_norm(_exc[_exc_key][0][NORM]) TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc) diff --git a/spacy/tests/lang/sr/test_exceptions.py b/spacy/tests/lang/sr/test_exceptions.py index fa92e5e2d..e8819e628 100644 --- a/spacy/tests/lang/sr/test_exceptions.py +++ b/spacy/tests/lang/sr/test_exceptions.py @@ -2,15 +2,15 @@ import pytest @pytest.mark.parametrize( - "text,norms,lemmas", + "text,norms", [ - ("о.г.", ["ове године"], ["ова година"]), - ("чет.", ["четвртак"], ["четвртак"]), - ("гђа", ["госпођа"], ["госпођа"]), - ("ил'", ["или"], ["или"]), + ("о.г.", ["ove godine"]), + ("чет.", ["četvrtak"]), + ("гђа", ["gospođa"]), + ("ил'", ["ili"]), ], ) -def test_sr_tokenizer_abbrev_exceptions(sr_tokenizer, text, norms, lemmas): +def test_sr_tokenizer_abbrev_exceptions(sr_tokenizer, text, norms): tokens = sr_tokenizer(text) assert len(tokens) == 1 assert [token.norm_ for token in tokens] == norms diff --git a/spacy/tests/lang/sr/test_lex_attrs.py b/spacy/tests/lang/sr/test_lex_attrs.py new file mode 100644 index 000000000..4a8039df5 --- /dev/null +++ b/spacy/tests/lang/sr/test_lex_attrs.py @@ -0,0 +1,17 @@ +import pytest + + +@pytest.mark.parametrize( + "text,like_num,norm,prefix,suffix", + [ + ("нула", True, "nula", "n", "ula"), + ("Казна", False, "kazna", "K", "zna"), + ], +) +def test_lex_attrs(sr_tokenizer, text, like_num, norm, prefix, suffix): + tokens = sr_tokenizer(text) + assert len(tokens) == 1 + assert tokens[0].like_num == like_num + assert tokens[0].norm_ == norm + assert tokens[0].prefix_ == prefix + assert tokens[0].suffix_ == suffix diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py index e90617852..9cf759c55 100644 --- a/spacy/training/initialize.py +++ b/spacy/training/initialize.py @@ -133,10 +133,11 @@ def init_vocab( logger.info("Added vectors: %s", vectors) # warn if source model vectors are not identical sourced_vectors_hashes = nlp.meta.pop("_sourced_vectors_hashes", {}) - vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"])) - for sourced_component, sourced_vectors_hash in sourced_vectors_hashes.items(): - if vectors_hash != sourced_vectors_hash: - warnings.warn(Warnings.W113.format(name=sourced_component)) + if len(sourced_vectors_hashes) > 0: + vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"])) + for sourced_component, sourced_vectors_hash in sourced_vectors_hashes.items(): + if vectors_hash != sourced_vectors_hash: + warnings.warn(Warnings.W113.format(name=sourced_component)) logger.info("Finished initializing nlp object") diff --git a/website/meta/universe.json b/website/meta/universe.json index 0dac6ab27..d4da65c00 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,5 +1,55 @@ { "resources": [ + { + "id": "parsigs", + "title": "parsigs", + "slogan": "Structuring prescriptions text made simple using spaCy", + "description": "Parsigs is an open-source project that aims to extract the relevant dosage information from prescriptions text without compromising the patient's privacy.\n\nNotice you also need to install the model in order to use the package: `pip install https://huggingface.co/royashcenazi/en_parsigs/resolve/main/en_parsigs-any-py3-none-any.whl`", + "github": "royashcenazi/parsigs", + "pip": "parsigs", + "code_language": "python", + "author": "Roy Ashcenazi", + "code_example": [ + "# You'll need to install the trained model, see instructions in the description section", + "from parsigs.parse_sig_api import StructuredSig, SigParser", + "sig_parser = SigParser()", + "", + "sig = 'Take 1 tablet of ibuprofen 200mg 3 times every day for 3 weeks'", + "parsed_sig = sig_parser.parse(sig)" + ], + "author_links": { + "github": "royashcenazi" + }, + "category": ["model", "research", "biomedical"], + "tags": ["sigs", "prescription","pharma"] + }, + { + "id": "latincy", + "title": "LatinCy", + "thumb": "https://raw.githubusercontent.com/diyclassics/la_core_web_lg/main/latincy-logo.png", + "slogan": "Synthetic trained spaCy pipelines for Latin NLP", + "description": "Set of trained general purpose Latin-language 'core' pipelines for use with spaCy. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other.", + "url": "https://huggingface.co/latincy", + "code_example": [ + "# pip install https://huggingface.co/latincy/la_core_web_lg/resolve/main/la_core_web_lg-any-py3-none-any.whl", + "import spacy", + "nlp = spacy.load('la_core_web_lg')", + "doc = nlp('Haec narrantur a poetis de Perseo')", + "", + "print(f'{doc[0].text}, {doc[0].norm_}, {doc[0].lemma_}, {doc[0].pos_}')", + "", + "# > Haec, haec, hic, DET" + ], + "code_language": "python", + "author": "Patrick J. Burns", + "author_links": { + "twitter": "@diyclassics", + "github": "diyclassics", + "website": "https://diyclassics.github.io/" + }, + "category": ["pipeline", "research"], + "tags": ["latin"] + }, { "id": "spacy-wasm", "title": "spacy-wasm",