Merge branch 'master' into develop

This commit is contained in:
Ines Montani 2019-12-21 18:55:03 +01:00
commit 158b98a3ef
124 changed files with 2920 additions and 652 deletions

106
.github/contributors/GuiGel.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Guillaume Gelabert |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-11-15 |
| GitHub username | GuiGel |
| Website (optional) | |

106
.github/contributors/Olamyy.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [ x ] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Olamilekan Wahab |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 8/11/2019 |
| GitHub username | Olamyy |
| Website (optional) | |

106
.github/contributors/aajanki.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Antti Ajanki |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-11-30 |
| GitHub username | aajanki |
| Website (optional) | |

106
.github/contributors/erip.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Elijah Rippeth |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-11-16 |
| GitHub username | erip |
| Website (optional) | |

106
.github/contributors/mmaybeno.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Matt Maybeno |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-11-19 |
| GitHub username | mmaybeno |
| Website (optional) | |

87
.github/contributors/mr-bjerre.md vendored Normal file
View File

@ -0,0 +1,87 @@
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Nicolai Bjerre Pedersen |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-12-06 |
| GitHub username | mr_bjerre |
| Website (optional) | |

106
.github/contributors/questoph.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Christoph Purschke |
| Company name (if applicable) | University of Luxembourg |
| Title or role (if applicable) | |
| Date | 14/11/2019 |
| GitHub username | questoph |
| Website (optional) | https://purschke.info |

View File

@ -35,24 +35,12 @@ jobs:
dependsOn: 'Validate'
strategy:
matrix:
# Python 2.7 currently doesn't work because it seems to be a narrow
# unicode build, which causes problems with the regular expressions
# Python27Linux:
# imageName: 'ubuntu-16.04'
# python.version: '2.7'
# Python27Mac:
# imageName: 'macos-10.13'
# python.version: '2.7'
Python35Linux:
imageName: 'ubuntu-16.04'
python.version: '3.5'
Python35Windows:
imageName: 'vs2017-win2016'
python.version: '3.5'
Python35Mac:
imageName: 'macos-10.13'
python.version: '3.5'
Python36Linux:
imageName: 'ubuntu-16.04'
python.version: '3.6'
@ -62,15 +50,25 @@ jobs:
Python36Mac:
imageName: 'macos-10.13'
python.version: '3.6'
Python37Linux:
# Don't test on 3.7 for now to speed up builds
# Python37Linux:
# imageName: 'ubuntu-16.04'
# python.version: '3.7'
# Python37Windows:
# imageName: 'vs2017-win2016'
# python.version: '3.7'
# Python37Mac:
# imageName: 'macos-10.13'
# python.version: '3.7'
Python38Linux:
imageName: 'ubuntu-16.04'
python.version: '3.7'
Python37Windows:
python.version: '3.8'
Python38Windows:
imageName: 'vs2017-win2016'
python.version: '3.7'
Python37Mac:
python.version: '3.8'
Python38Mac:
imageName: 'macos-10.13'
python.version: '3.7'
python.version: '3.8'
maxParallel: 4
pool:
vmImage: $(imageName)
@ -81,10 +79,8 @@ jobs:
versionSpec: '$(python.version)'
architecture: 'x64'
# Downgrading pip is necessary to prevent a wheel version incompatiblity.
# Might be fixed in the future or some other way, so investigate again.
- script: |
python -m pip install -U pip==18.1 setuptools
python -m pip install -U setuptools
pip install -r requirements.txt
displayName: 'Install dependencies'

View File

@ -8,6 +8,7 @@ import plac
from pathlib import Path
import re
import json
import tqdm
import spacy
import spacy.util
@ -225,6 +226,13 @@ def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None):
def write_conllu(docs, file_):
if not Token.has_extension("get_conllu_lines"):
Token.set_extension("get_conllu_lines", method=get_token_conllu)
if not Token.has_extension("begins_fused"):
Token.set_extension("begins_fused", default=False)
if not Token.has_extension("inside_fused"):
Token.set_extension("inside_fused", default=False)
merger = Matcher(docs[0].vocab)
merger.add("SUBTOK", None, [{"DEP": "subtok", "op": "+"}])
for i, doc in enumerate(docs):
@ -483,8 +491,9 @@ def main(
vectors_dir=None,
use_oracle_segments=False,
):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)
Token.set_extension("inside_fused", default=False)
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)

View File

@ -1,6 +1,7 @@
import logging
import random
from tqdm import tqdm
from collections import defaultdict
logger = logging.getLogger(__name__)
@ -119,8 +120,6 @@ def get_eval_results(data, el_pipe=None):
Only evaluate entities that overlap between gold and NER, to isolate the performance of the NEL.
If the docs in the data require further processing with an entity linker, set el_pipe.
"""
from tqdm import tqdm
docs = []
golds = []
for d, g in tqdm(data, leave=False):

View File

@ -6,6 +6,7 @@ import bz2
import logging
import random
import json
from tqdm import tqdm
from functools import partial
@ -457,9 +458,6 @@ def read_training(nlp, entity_file_path, dev, limit, kb, labels_discard=None):
""" This method provides training examples that correspond to the entity annotations found by the nlp object.
For training, it will include both positive and negative examples by using the candidate generator from the kb.
For testing (kb=None), it will include all positive examples only."""
from tqdm import tqdm
if not labels_discard:
labels_discard = []

View File

@ -7,6 +7,7 @@ import attr
from pathlib import Path
import re
import json
import tqdm
import spacy
import spacy.util
@ -291,11 +292,6 @@ def get_token_conllu(token, i):
return "\n".join(lines)
Token.set_extension("get_conllu_lines", method=get_token_conllu, force=True)
Token.set_extension("begins_fused", default=False, force=True)
Token.set_extension("inside_fused", default=False, force=True)
##################
# Initialization #
##################
@ -394,8 +390,9 @@ class TreebankPaths(object):
limit=("Size limit", "option", "n", int),
)
def main(ud_dir, parses_dir, config, corpus, limit=0):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)
Token.set_extension("inside_fused", default=False)
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)
@ -426,10 +423,7 @@ def main(ud_dir, parses_dir, config, corpus, limit=0):
for batch in batches:
pbar.update(sum(len(ex.doc) for ex in batch))
nlp.update(
examples=batch,
sgd=optimizer,
drop=config.dropout,
losses=losses,
examples=batch, sgd=optimizer, drop=config.dropout, losses=losses,
)
out_path = parses_dir / corpus / "epoch-{i}.conllu".format(i=i)

View File

@ -8,8 +8,8 @@ For more details, see the documentation:
* Knowledge base: https://spacy.io/api/kb
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
Compatible with: spaCy v2.2
Last tested with: v2.2
Compatible with: spaCy v2.2.3
Last tested with: v2.2.3
"""
from __future__ import unicode_literals, print_function

View File

@ -14,6 +14,7 @@ pre-train with the development data, but also not *so* terrible: we're not using
the development labels, after all --- only the unlabelled text.
"""
import plac
import tqdm
import random
import spacy
import thinc.extra.datasets
@ -106,9 +107,6 @@ def create_pipeline(width, embed_size, vectors_model):
def train_tensorizer(nlp, texts, dropout, n_iter):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
tensorizer = nlp.create_pipe("tensorizer")
nlp.add_pipe(tensorizer)
optimizer = nlp.begin_training()
@ -122,9 +120,6 @@ def train_tensorizer(nlp, texts, dropout, n_iter):
def train_textcat(nlp, n_texts, n_iter=10):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
textcat = nlp.get_pipe("textcat")
tok2vec_weights = textcat.model.tok2vec.to_bytes()
(train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)

View File

@ -8,8 +8,8 @@ For more details, see the documentation:
* Training: https://spacy.io/usage/training
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
Compatible with: spaCy v2.2
Last tested with: v2.2
Compatible with: spaCy v2.2.3
Last tested with: v2.2.3
"""
from __future__ import unicode_literals, print_function
@ -22,6 +22,7 @@ from spacy.vocab import Vocab
import spacy
from spacy.kb import KnowledgeBase
from spacy.pipeline import EntityRuler
from spacy.tokens import Span
from spacy.util import minibatch, compounding
@ -70,22 +71,35 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
nlp.vocab.vectors.name = "spacy_pretrained_vectors"
print("Created blank 'en' model with vocab from '%s'" % vocab_path)
# create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
# Add a sentencizer component. Alternatively, add a dependency parser for higher accuracy.
nlp.add_pipe(nlp.create_pipe('sentencizer'))
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data.
# Note that in a realistic application, an actual NER algorithm should be used instead.
ruler = EntityRuler(nlp)
patterns = [{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
# Create the Entity Linker component and add it to the pipeline.
if "entity_linker" not in nlp.pipe_names:
entity_linker = nlp.create_pipe("entity_linker")
# use only the predicted EL score and not the prior probability (for demo purposes)
cfg = {"incl_prior": False}
entity_linker = nlp.create_pipe("entity_linker", cfg)
kb = KnowledgeBase(vocab=nlp.vocab)
kb.load_bulk(kb_path)
print("Loaded Knowledge Base from '%s'" % kb_path)
entity_linker.set_kb(kb)
nlp.add_pipe(entity_linker, last=True)
else:
entity_linker = nlp.get_pipe("entity_linker")
kb = entity_linker.kb
# make sure the annotated examples correspond to known identifiers in the knowlege base
kb_ids = kb.get_entity_strings()
# Convert the texts to docs to make sure we have doc.ents set for the training examples.
# Also ensure that the annotated examples correspond to known identifiers in the knowlege base.
kb_ids = nlp.get_pipe("entity_linker").kb.get_entity_strings()
TRAIN_DOCS = []
for text, annotation in TRAIN_DATA:
with nlp.disable_pipes("entity_linker"):
doc = nlp(text)
annotation_clean = annotation
for offset, kb_id_dict in annotation["links"].items():
new_dict = {}
for kb_id, value in kb_id_dict.items():
@ -95,7 +109,8 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
print(
"Removed", kb_id, "from training because it is not in the KB."
)
annotation["links"][offset] = new_dict
annotation_clean["links"][offset] = new_dict
TRAIN_DOCS.append((doc, annotation_clean))
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
@ -103,10 +118,10 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
# reset and initialize the weights randomly
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
random.shuffle(TRAIN_DOCS)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
batches = minibatch(TRAIN_DOCS, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(
batch,
@ -136,16 +151,8 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
def _apply_model(nlp):
for text, annotation in TRAIN_DATA:
doc = nlp.tokenizer(text)
# set entities so the evaluation is independent of the NER step
# all the examples contain 'Russ Cochran' as the first two tokens in the sentence
rc_ent = Span(doc, 0, 2, label=PERSON)
doc.ents = [rc_ent]
# apply the entity linker which will now make predictions for the 'Russ Cochran' entities
doc = nlp.get_pipe("entity_linker")(doc)
doc = nlp(text)
print()
print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc])

View File

@ -8,6 +8,7 @@ from __future__ import unicode_literals
from os import path
import tqdm
import math
import numpy
import plac
@ -35,9 +36,6 @@ from tensorflow.contrib.tensorboard.plugins.projector import (
),
)
def main(vectors_loc, out_loc, name="spaCy_vectors"):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
meta_file = "{}.tsv".format(name)
out_meta_file = path.join(out_loc, meta_file)

View File

@ -1,7 +1,7 @@
# Our libraries
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=7.3.0,<7.4.0
thinc==7.4.0.dev0
blis>=0.4.0,<0.5.0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.4.0,<1.1.0
@ -12,6 +12,7 @@ numpy>=1.15.0
requests>=2.13.0,<3.0.0
plac>=0.9.6,<1.2.0
pathlib==1.0.1; python_version < "3.4"
tqdm>=4.38.0,<5.0.0
# Optional dependencies
jsonschema>=2.6.0,<3.1.0
# Development dependencies

View File

@ -38,13 +38,13 @@ setup_requires =
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0
thinc>=7.3.0,<7.4.0
thinc==7.4.0.dev0
install_requires =
# Our libraries
murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=7.3.0,<7.4.0
thinc==7.4.0.dev0
blis>=0.4.0,<0.5.0
wasabi>=0.4.0,<1.1.0
srsly>=0.1.0,<1.1.0
@ -73,7 +73,7 @@ cuda100 =
cupy-cuda100>=5.0.0b4
# Language tokenizers with external dependencies
ja =
mecab-python3==0.7
fugashi>=0.1.3
ko =
natto-py==0.9.0
th =

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy"
__version__ = "2.2.2"
__version__ = "2.2.3"
__release__ = True
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -7,8 +7,9 @@ from spacy.gold import Example
from ...gold import iob_to_biluo
def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None,
ner_map=None, **_):
def conllu2json(
input_data, n_sents=10, use_morphology=False, lang=None, ner_map=None, **_
):
"""
Convert conllu files into JSON format for use with train cli.
use_morphology parameter enables appending morphology to tags, which is
@ -29,13 +30,19 @@ def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None,
has_ner_tags = False
for i, example in enumerate(conll_data):
if not checked_for_ner:
has_ner_tags = is_ner(example.token_annotation.entities[0],
MISC_NER_PATTERN)
has_ner_tags = is_ner(
example.token_annotation.entities[0], MISC_NER_PATTERN
)
checked_for_ner = True
raw += example.text
sentences.append(generate_sentence(example.token_annotation,
has_ner_tags, MISC_NER_PATTERN,
ner_map=ner_map))
sentences.append(
generate_sentence(
example.token_annotation,
has_ner_tags,
MISC_NER_PATTERN,
ner_map=ner_map,
)
)
# Real-sized documents could be extracted using the comments on the
# conllu document
if len(sentences) % n_sents == 0:
@ -105,8 +112,9 @@ def read_conllx(input_data, use_morphology=False, n=0):
if space:
raw += " "
example = Example(doc=raw)
example.set_token_annotation(ids=ids, words=words, tags=tags,
heads=heads, deps=deps, entities=ents)
example.set_token_annotation(
ids=ids, words=words, tags=tags, heads=heads, deps=deps, entities=ents
)
yield example
i += 1
if 1 <= n <= i:
@ -143,13 +151,11 @@ def extract_tags(iob, tag_pattern, ner_map=None):
return new_iob
def generate_sentence(token_annotation, has_ner_tags, tag_pattern,
ner_map=None):
def generate_sentence(token_annotation, has_ner_tags, tag_pattern, ner_map=None):
sentence = {}
tokens = []
if has_ner_tags:
iob = extract_tags(token_annotation.entities, tag_pattern,
ner_map=ner_map)
iob = extract_tags(token_annotation.entities, tag_pattern, ner_map=ner_map)
biluo = iob_to_biluo(iob)
for i, id in enumerate(token_annotation.ids):
token = {}

View File

@ -3,6 +3,7 @@ from __future__ import unicode_literals
import plac
import math
from tqdm import tqdm
import numpy
from ast import literal_eval
from pathlib import Path
@ -116,9 +117,6 @@ def open_file(loc):
def read_attrs_from_deprecated(freqs_loc, clusters_loc):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
from tqdm import tqdm
if freqs_loc is not None:
with msg.loading("Counting frequencies..."):
probs, _ = read_freqs(freqs_loc)
@ -201,9 +199,6 @@ def add_vectors(nlp, vectors_loc, prune_vectors, name=None):
def read_vectors(vectors_loc):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
from tqdm import tqdm
f = open_file(vectors_loc)
shape = tuple(int(size) for size in next(f).split())
vectors_data = numpy.zeros(shape=shape, dtype="f")
@ -220,9 +215,6 @@ def read_vectors(vectors_loc):
def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
from tqdm import tqdm
counts = PreshCounter()
total = 0
with freqs_loc.open() as f:
@ -252,9 +244,6 @@ def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
def read_clusters(clusters_loc):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
from tqdm import tqdm
clusters = {}
if ftfy is None:
user_warning(Warnings.W004)

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals, division, print_function
import plac
import tqdm
from pathlib import Path
import srsly
import cProfile
@ -46,9 +47,6 @@ def profile(model, inputs=None, n_texts=10000):
def parse_texts(nlp, texts):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
pass

View File

@ -3,6 +3,7 @@ from __future__ import unicode_literals, division, print_function
import plac
import os
import tqdm
from pathlib import Path
from thinc.neural._classes.model import Model
from timeit import default_timer as timer
@ -88,10 +89,6 @@ def train(
JSON format. To convert data from other formats, use the `spacy convert`
command.
"""
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
util.fix_random_seed()
util.set_env_log(verbose)
@ -524,9 +521,6 @@ def _score_for_model(meta):
@contextlib.contextmanager
def _create_progress_bar(total):
# temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
import tqdm
if int(os.environ.get("LOG_FRIENDLY", 0)):
yield
else:

View File

@ -53,7 +53,9 @@ class Warnings(object):
W009 = ("Custom factory '{name}' provided by entry points of another "
"package overwrites built-in factory.")
W010 = ("As of v2.1.0, the PhraseMatcher doesn't have a phrase length "
"limit anymore, so the max_length argument is now deprecated.")
"limit anymore, so the max_length argument is now deprecated. "
"If you did not specify this parameter, make sure you call the "
"constructor with named arguments instead of positional ones.")
W011 = ("It looks like you're calling displacy.serve from within a "
"Jupyter notebook or a similar environment. This likely means "
"you're already running a local web server, so there's no need to "
@ -72,7 +74,7 @@ class Warnings(object):
"instead.")
W014 = ("As of v2.1.0, the `disable` keyword argument on the serialization "
"methods is and should be replaced with `exclude`. This makes it "
"consistent with the other objects serializable.")
"consistent with the other serializable objects.")
W015 = ("As of v2.1.0, the use of keyword arguments to exclude fields from "
"being serialized or deserialized is deprecated. Please use the "
"`exclude` argument instead. For example: exclude=['{arg}'].")
@ -81,7 +83,8 @@ class Warnings(object):
"Future versions may introduce a `n_process` argument for "
"parallel inference via multiprocessing.")
W017 = ("Alias '{alias}' already exists in the Knowledge Base.")
W018 = ("Entity '{entity}' already exists in the Knowledge Base.")
W018 = ("Entity '{entity}' already exists in the Knowledge Base - "
"ignoring the duplicate entry.")
W019 = ("Changing vectors name from {old} to {new}, to avoid clash with "
"previously loaded vectors. See Issue #3853.")
W020 = ("Unnamed vectors. This won't allow multiple vectors models to be "
@ -101,6 +104,7 @@ class Warnings(object):
"the Knowledge Base.")
W025 = ("'{name}' requires '{attr}' to be assigned, but none of the "
"previous components in the pipeline declare that they assign it.")
W026 = ("Unable to set all sentence boundaries from dependency parses.")
@add_codes
@ -529,17 +533,19 @@ class Errors(object):
E185 = ("Received invalid attribute in component attribute declaration: "
"{obj}.{attr}\nAttribute '{attr}' does not exist on {obj}.")
E186 = ("'{tok_a}' and '{tok_b}' are different texts.")
E187 = ("Tokenizer special cases are not allowed to modify the text. "
E187 = ("Only unicode strings are supported as labels.")
E188 = ("Could not match the gold entity links to entities in the doc - "
"make sure the gold EL data refers to valid results of the "
"named entity recognizer in the `nlp` pipeline.")
# TODO: fix numbering after merging develop into master
E997 = ("Tokenizer special cases are not allowed to modify the text. "
"This would map '{chunk}' to '{orth}' given token attributes "
"'{token_attrs}'.")
# TODO: fix numbering after merging develop into master
E998 = ("Can only create GoldParse's from Example's without a Doc, "
"if get_gold_parses() is called with a Vocab object.")
E999 = ("Encountered an unexpected format for the dictionary holding "
"gold annotations: {gold_dict}")
@add_codes
class TempErrors(object):
T003 = ("Resizing pretrained Tagger models is not currently supported.")

View File

@ -1121,7 +1121,7 @@ cdef class GoldParse:
return not nonproj.is_nonproj_tree(self.heads)
def docs_to_json(docs, id=0):
def docs_to_json(docs, id=0, ner_missing_tag="O"):
"""Convert a list of Doc objects into the JSON-serializable format used by
the spacy train command.
@ -1139,7 +1139,7 @@ def docs_to_json(docs, id=0):
json_cat = {"label": cat, "value": val}
json_para["cats"].append(json_cat)
ent_offsets = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
biluo_tags = biluo_tags_from_offsets(doc, ent_offsets)
biluo_tags = biluo_tags_from_offsets(doc, ent_offsets, missing=ner_missing_tag)
for j, sent in enumerate(doc.sents):
json_sent = {"tokens": [], "brackets": []}
for token in sent:

View File

@ -136,19 +136,24 @@ cdef class KnowledgeBase:
if len(entity_list) != len(freq_list) or len(entity_list) != len(vector_list):
raise ValueError(Errors.E140)
nr_entities = len(entity_list)
nr_entities = len(set(entity_list))
self._entry_index = PreshMap(nr_entities+1)
self._entries = entry_vec(nr_entities+1)
i = 0
cdef KBEntryC entry
cdef hash_t entity_hash
while i < nr_entities:
while i < len(entity_list):
# only process this entity if its unique ID hadn't been added before
entity_hash = self.vocab.strings.add(entity_list[i])
if entity_hash in self._entry_index:
user_warning(Warnings.W018.format(entity=entity_list[i]))
else:
entity_vector = vector_list[i]
if len(entity_vector) != self.entity_vector_length:
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
entity_hash = self.vocab.strings.add(entity_list[i])
entry.entity_hash = entity_hash
entry.freq = freq_list[i]

View File

@ -31,6 +31,10 @@ _latin_u_supplement = r"\u00C0-\u00D6\u00D8-\u00DE"
_latin_l_supplement = r"\u00DF-\u00F6\u00F8-\u00FF"
_latin_supplement = r"\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF"
_hangul_syllables = r"\uAC00-\uD7AF"
_hangul_jamo = r"\u1100-\u11FF"
_hangul = _hangul_syllables + _hangul_jamo
# letters with diacritics - Catalan, Czech, Latin, Latvian, Lithuanian, Polish, Slovak, Turkish, Welsh
_latin_u_extendedA = (
r"\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C"
@ -202,7 +206,15 @@ _upper = LATIN_UPPER + _russian_upper + _tatar_upper + _greek_upper + _ukrainian
_lower = LATIN_LOWER + _russian_lower + _tatar_lower + _greek_lower + _ukrainian_lower
_uncased = (
_bengali + _hebrew + _persian + _sinhala + _hindi + _kannada + _tamil + _telugu
_bengali
+ _hebrew
+ _persian
+ _sinhala
+ _hindi
+ _kannada
+ _tamil
+ _telugu
+ _hangul
)
ALPHA = group_chars(LATIN + _russian + _tatar + _greek + _ukrainian + _uncased)

View File

@ -2,7 +2,7 @@
from __future__ import unicode_literals
from ...symbols import POS, PUNCT, SYM, ADJ, CCONJ, SCONJ, NUM, DET, ADV, ADP, X, VERB
from ...symbols import NOUN, PROPN, PART, INTJ, PRON
from ...symbols import NOUN, PROPN, PART, INTJ, PRON, AUX
TAG_MAP = {
@ -4249,4 +4249,20 @@ TAG_MAP = {
"Voice": "Act",
"Case": "Nom|Gen|Dat|Acc|Voc",
},
'ADJ': {POS: ADJ},
'ADP': {POS: ADP},
'ADV': {POS: ADV},
'AtDf': {POS: DET},
'AUX': {POS: AUX},
'CCONJ': {POS: CCONJ},
'DET': {POS: DET},
'NOUN': {POS: NOUN},
'NUM': {POS: NUM},
'PART': {POS: PART},
'PRON': {POS: PRON},
'PROPN': {POS: PROPN},
'SCONJ': {POS: SCONJ},
'SYM': {POS: SYM},
'VERB': {POS: VERB},
'X': {POS: X},
}

View File

@ -305,6 +305,9 @@ TAG_MAP = {
"VERB__VerbForm=Ger": {"morph": "VerbForm=Ger", POS: VERB},
"VERB__VerbForm=Inf": {"morph": "VerbForm=Inf", POS: VERB},
"X___": {"morph": "_", POS: X},
"___PunctType=Quot": {POS: PUNCT},
"___VerbForm=Inf": {POS: VERB},
"___Number=Sing|Person=2|PronType=Prs": {POS: PRON},
"_SP": {"morph": "_", POS: SPACE},
}
# fmt: on

View File

@ -3,6 +3,8 @@ from __future__ import unicode_literals
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
@ -13,10 +15,13 @@ from ...util import update_exc, add_lookups
class FinnishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters.update(LEX_ATTRS)
lex_attr_getters[LANG] = lambda text: "fi"
lex_attr_getters[NORM] = add_lookups(
Language.Defaults.lex_attr_getters[NORM], BASE_NORMS
)
infixes = TOKENIZER_INFIXES
suffixes = TOKENIZER_SUFFIXES
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = STOP_WORDS

View File

@ -18,7 +18,8 @@ _num_words = [
"kymmenen",
"yksitoista",
"kaksitoista",
"kolmetoista" "neljätoista",
"kolmetoista",
"neljätoista",
"viisitoista",
"kuusitoista",
"seitsemäntoista",

View File

@ -0,0 +1,33 @@
# coding: utf8
from __future__ import unicode_literals
from ..char_classes import LIST_ELLIPSES, LIST_ICONS
from ..char_classes import CONCAT_QUOTES, ALPHA, ALPHA_LOWER, ALPHA_UPPER
from ..punctuation import TOKENIZER_SUFFIXES
_quotes = CONCAT_QUOTES.replace("'", "")
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[{al}])\.(?=[{au}])".format(al=ALPHA_LOWER, au=ALPHA_UPPER),
r"(?<=[{a}])[,!?](?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])[:<>=](?=[{a}])".format(a=ALPHA),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])([{q}\)\]\(\[])(?=[{a}])".format(a=ALPHA, q=_quotes),
r"(?<=[{a}])--(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
]
)
_suffixes = [
suffix
for suffix in TOKENIZER_SUFFIXES
if suffix not in ["'s", "'S", "s", "S", r"\'"]
]
TOKENIZER_INFIXES = _infixes
TOKENIZER_SUFFIXES = _suffixes

View File

@ -5,7 +5,7 @@ from ..punctuation import TOKENIZER_INFIXES
from ..char_classes import ALPHA
ELISION = " ' ".strip().replace(" ", "").replace("\n", "")
ELISION = " ' ".strip().replace(" ", "")
_infixes = TOKENIZER_INFIXES + [

View File

@ -12,21 +12,23 @@ from ...tokens import Doc
from ...compat import copy_reg
from ...util import DummyTokenizer
# Handling for multiple spaces in a row is somewhat awkward, this simplifies
# the flow by creating a dummy with the same interface.
DummyNode = namedtuple("DummyNode", ["surface", "pos", "feature"])
DummyNodeFeatures = namedtuple("DummyNodeFeatures", ["lemma"])
DummySpace = DummyNode(' ', ' ', DummyNodeFeatures(' '))
ShortUnitWord = namedtuple("ShortUnitWord", ["surface", "lemma", "pos"])
def try_mecab_import():
"""Mecab is required for Japanese support, so check for it.
def try_fugashi_import():
"""Fugashi is required for Japanese support, so check for it.
It it's not available blow up and explain how to fix it."""
try:
import MeCab
import fugashi
return MeCab
return fugashi
except ImportError:
raise ImportError(
"Japanese support requires MeCab: "
"https://github.com/SamuraiT/mecab-python3"
"Japanese support requires Fugashi: "
"https://github.com/polm/fugashi"
)
@ -39,7 +41,7 @@ def resolve_pos(token):
"""
# this is only used for consecutive ascii spaces
if token.pos == "空白":
if token.surface == " ":
return "空白"
# TODO: This is a first take. The rules here are crude approximations.
@ -53,55 +55,45 @@ def resolve_pos(token):
return token.pos + ",ADJ"
return token.pos
def get_words_and_spaces(tokenizer, text):
"""Get the individual tokens that make up the sentence and handle white space.
Japanese doesn't usually use white space, and MeCab's handling of it for
multiple spaces in a row is somewhat awkward.
"""
tokens = tokenizer.parseToNodeList(text)
def detailed_tokens(tokenizer, text):
"""Format Mecab output into a nice data structure, based on Janome."""
node = tokenizer.parseToNode(text)
node = node.next # first node is beginning of sentence and empty, skip it
words = []
spaces = []
while node.posid != 0:
surface = node.surface
base = surface # a default value. Updated if available later.
parts = node.feature.split(",")
pos = ",".join(parts[0:4])
if len(parts) > 7:
# this information is only available for words in the tokenizer
# dictionary
base = parts[7]
words.append(ShortUnitWord(surface, base, pos))
# The way MeCab stores spaces is that the rlength of the next token is
# the length of that token plus any preceding whitespace, **in bytes**.
# also note that this is only for half-width / ascii spaces. Full width
# spaces just become tokens.
scount = node.next.rlength - node.next.length
spaces.append(bool(scount))
while scount > 1:
words.append(ShortUnitWord(" ", " ", "空白"))
for token in tokens:
# If there's more than one space, spaces after the first become tokens
for ii in range(len(token.white_space) - 1):
words.append(DummySpace)
spaces.append(False)
scount -= 1
node = node.next
words.append(token)
spaces.append(bool(token.white_space))
return words, spaces
class JapaneseTokenizer(DummyTokenizer):
def __init__(self, cls, nlp=None):
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
self.tokenizer = try_mecab_import().Tagger()
self.tokenizer.parseToNode("") # see #2901
self.tokenizer = try_fugashi_import().Tagger()
self.tokenizer.parseToNodeList("") # see #2901
def __call__(self, text):
dtokens, spaces = detailed_tokens(self.tokenizer, text)
dtokens, spaces = get_words_and_spaces(self.tokenizer, text)
words = [x.surface for x in dtokens]
doc = Doc(self.vocab, words=words, spaces=spaces)
mecab_tags = []
unidic_tags = []
for token, dtoken in zip(doc, dtokens):
mecab_tags.append(dtoken.pos)
unidic_tags.append(dtoken.pos)
token.tag_ = resolve_pos(dtoken)
token.lemma_ = dtoken.lemma
doc.user_data["mecab_tags"] = mecab_tags
# if there's no lemma info (it's an unk) just use the surface
token.lemma_ = dtoken.feature.lemma or dtoken.surface
doc.user_data["unidic_tags"] = unidic_tags
return doc
@ -131,5 +123,4 @@ def pickle_japanese(instance):
copy_reg.pickle(Japanese, pickle_japanese)
__all__ = ["Japanese"]

View File

@ -0,0 +1,67 @@
# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM
_num_words = [
"",
"",
# Native Korean number system
"하나",
"",
"",
"",
"다섯",
"여섯",
"일곱",
"여덟",
"아홉",
"",
"스물",
"서른",
"마흔",
"",
"예순",
"일흔",
"여든",
"아흔",
# Sino-Korean number system
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"십만",
"백만",
"천만",
"일억",
"십억",
"백억",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if any(char.lower() in _num_words for char in text):
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -3,6 +3,7 @@ from __future__ import unicode_literals
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .norm_exceptions import NORM_EXCEPTIONS
from .punctuation import TOKENIZER_INFIXES
from .lex_attrs import LEX_ATTRS
from .tag_map import TAG_MAP
from .stop_words import STOP_WORDS
@ -24,6 +25,7 @@ class LuxembourgishDefaults(Language.Defaults):
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = STOP_WORDS
tag_map = TAG_MAP
infixes = TOKENIZER_INFIXES
class Luxembourgish(Language):

View File

@ -6,7 +6,7 @@ from __future__ import unicode_literals
# variants (vläicht = vlaicht, vleicht, viläicht, viläischt, etc. etc.)
# here one could include the most common spelling mistakes
_exc = {"datt": "dass", "wgl.": "weg.", "vläicht": "viläicht"}
_exc = {"dass": "datt", "viläicht": "vläicht"}
NORM_EXCEPTIONS = {}

View File

@ -0,0 +1,23 @@
# coding: utf8
from __future__ import unicode_literals
from ..char_classes import LIST_ELLIPSES, LIST_ICONS
from ..char_classes import CONCAT_QUOTES, ALPHA, ALPHA_LOWER, ALPHA_UPPER
ELISION = " ' ".strip().replace(" ", "")
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[{a}][{el}])(?=[{a}])".format(a=ALPHA, el=ELISION),
r"(?<=[{al}])\.(?=[{au}])".format(al=ALPHA_LOWER, au=ALPHA_UPPER),
r"(?<=[{a}])[,!?](?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])[:<>=](?=[{a}])".format(a=ALPHA),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])--(?=[{a}])".format(a=ALPHA),
r"(?<=[0-9])-(?=[0-9])",
]
)
TOKENIZER_INFIXES = _infixes

View File

@ -2,33 +2,17 @@
from __future__ import unicode_literals
from ...symbols import ORTH, LEMMA, NORM
from ..punctuation import TOKENIZER_PREFIXES
# TODO
# tokenize cliticised definite article "d'" as token of its own: d'Kanner > [d'] [Kanner]
# treat other apostrophes within words as part of the word: [op d'mannst], [fir d'éischt] (= exceptions)
# how to write the tokenisation exeption for the articles d' / D' ? This one is not working.
_prefixes = [
prefix for prefix in TOKENIZER_PREFIXES if prefix not in ["d'", "D'", "d", "D"]
]
_exc = {
"d'mannst": [
{ORTH: "d'", LEMMA: "d'"},
{ORTH: "mannst", LEMMA: "mann", NORM: "mann"},
],
"d'éischt": [
{ORTH: "d'", LEMMA: "d'"},
{ORTH: "éischt", LEMMA: "éischt", NORM: "éischt"},
],
}
_exc = {}
# translate / delete what is not necessary
# what does PRON_LEMMA mean?
for exc_data in [
{ORTH: "wgl.", LEMMA: "wann ech gelift", NORM: "wann ech gelieft"},
{ORTH: "'t", LEMMA: "et", NORM: "et"},
{ORTH: "'T", LEMMA: "et", NORM: "et"},
{ORTH: "wgl.", LEMMA: "wannechgelift", NORM: "wannechgelift"},
{ORTH: "M.", LEMMA: "Monsieur", NORM: "Monsieur"},
{ORTH: "Mme.", LEMMA: "Madame", NORM: "Madame"},
{ORTH: "Dr.", LEMMA: "Dokter", NORM: "Dokter"},
@ -36,7 +20,7 @@ for exc_data in [
{ORTH: "asw.", LEMMA: "an sou weider", NORM: "an sou weider"},
{ORTH: "etc.", LEMMA: "et cetera", NORM: "et cetera"},
{ORTH: "bzw.", LEMMA: "bezéiungsweis", NORM: "bezéiungsweis"},
{ORTH: "Jan.", LEMMA: "Januar", NORM: "Januar"},
{ORTH: "Jan.", LEMMA: "Januar", NORM: "Januar"}
]:
_exc[exc_data[ORTH]] = [exc_data]
@ -64,6 +48,4 @@ for orth in [
]:
_exc[orth] = [{ORTH: orth}]
TOKENIZER_PREFIXES = _prefixes
TOKENIZER_EXCEPTIONS = _exc

View File

@ -1,12 +1,12 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import POS, PUNCT, ADJ, CONJ, SCONJ, SYM, NUM, DET, ADV, ADP, X
from ...symbols import POS, PUNCT, ADJ, CONJ, CCONJ, SCONJ, SYM, NUM, DET, ADV, ADP, X
from ...symbols import VERB, NOUN, PROPN, PART, INTJ, PRON, AUX
# Tags are a combination of POS and morphological features from a yet
# unpublished dataset developed by Schibsted, Nasjonalbiblioteket and LTG. The
# Tags are a combination of POS and morphological features from a
# https://github.com/ltgoslo/norne developed by Schibsted, Nasjonalbiblioteket and LTG. The
# data format is .conllu and follows the Universal Dependencies annotation.
# (There are some annotation differences compared to this dataset:
# https://github.com/UniversalDependencies/UD_Norwegian-Bokmaal
@ -467,4 +467,97 @@ TAG_MAP = {
"VERB__VerbForm=Part": {"morph": "VerbForm=Part", POS: VERB},
"VERB___": {"morph": "_", POS: VERB},
"X___": {"morph": "_", POS: X},
'CCONJ___': {"morph": "_", POS: CCONJ},
"ADJ__Abbr=Yes": {"morph": "Abbr=Yes", POS: ADJ},
"ADJ__Abbr=Yes|Degree=Pos": {"morph": "Abbr=Yes|Degree=Pos", POS: ADJ},
"ADJ__Case=Gen|Definite=Def|Number=Sing|VerbForm=Part": {"morph": "Case=Gen|Definite=Def|Number=Sing|VerbForm=Part", POS: ADJ},
"ADJ__Definite=Def|Number=Sing|VerbForm=Part": {"morph": "Definite=Def|Number=Sing|VerbForm=Part", POS: ADJ},
"ADJ__Definite=Ind|Gender=Masc|Number=Sing|VerbForm=Part": {"morph": "Definite=Ind|Gender=Masc|Number=Sing|VerbForm=Part", POS: ADJ},
"ADJ__Definite=Ind|Gender=Neut|Number=Sing|VerbForm=Part": {"morph": "Definite=Ind|Gender=Neut|Number=Sing|VerbForm=Part", POS: ADJ},
"ADJ__Definite=Ind|Number=Sing|VerbForm=Part": {"morph": "Definite=Ind|Number=Sing|VerbForm=Part", POS: ADJ},
"ADJ__Number=Sing|VerbForm=Part": {"morph": "Number=Sing|VerbForm=Part", POS: ADJ},
"ADJ__VerbForm=Part": {"morph": "VerbForm=Part", POS: ADJ},
"ADP__Abbr=Yes": {"morph": "Abbr=Yes", POS: ADP},
"ADV__Abbr=Yes": {"morph": "Abbr=Yes", POS: ADV},
"DET__Case=Gen|Gender=Masc|Number=Sing|PronType=Art": {"morph": "Case=Gen|Gender=Masc|Number=Sing|PronType=Art", POS: DET},
"DET__Case=Gen|Number=Plur|PronType=Tot": {"morph": "Case=Gen|Number=Plur|PronType=Tot", POS: DET},
"DET__Definite=Def|PronType=Prs": {"morph": "Definite=Def|PronType=Prs", POS: DET},
"DET__Definite=Ind|Gender=Fem|Number=Sing|PronType=Prs": {"morph": "Definite=Ind|Gender=Fem|Number=Sing|PronType=Prs", POS: DET},
"DET__Definite=Ind|Gender=Masc|Number=Sing|PronType=Prs": {"morph": "Definite=Ind|Gender=Masc|Number=Sing|PronType=Prs", POS: DET},
"DET__Definite=Ind|Gender=Neut|Number=Sing|PronType=Prs": {"morph": "Definite=Ind|Gender=Neut|Number=Sing|PronType=Prs", POS: DET},
"DET__Gender=Fem|Number=Sing|PronType=Art": {"morph": "Gender=Fem|Number=Sing|PronType=Art", POS: DET},
"DET__Gender=Fem|Number=Sing|PronType=Ind": {"morph": "Gender=Fem|Number=Sing|PronType=Ind", POS: DET},
"DET__Gender=Fem|Number=Sing|PronType=Prs": {"morph": "Gender=Fem|Number=Sing|PronType=Prs", POS: DET},
"DET__Gender=Fem|Number=Sing|PronType=Tot": {"morph": "Gender=Fem|Number=Sing|PronType=Tot", POS: DET},
"DET__Gender=Masc|Number=Sing|Polarity=Neg|PronType=Neg": {"morph": "Gender=Masc|Number=Sing|Polarity=Neg|PronType=Neg", POS: DET},
"DET__Gender=Masc|Number=Sing|PronType=Art": {"morph": "Gender=Masc|Number=Sing|PronType=Art", POS: DET},
"DET__Gender=Masc|Number=Sing|PronType=Ind": {"morph": "Gender=Masc|Number=Sing|PronType=Ind", POS: DET},
"DET__Gender=Masc|Number=Sing|PronType=Tot": {"morph": "Gender=Masc|Number=Sing|PronType=Tot", POS: DET},
"DET__Gender=Neut|Number=Sing|Polarity=Neg|PronType=Neg": {"morph": "Gender=Neut|Number=Sing|Polarity=Neg|PronType=Neg", POS: DET},
"DET__Gender=Neut|Number=Sing|PronType=Art": {"morph": "Gender=Neut|Number=Sing|PronType=Art", POS: DET},
"DET__Gender=Neut|Number=Sing|PronType=Dem,Ind": {"morph": "Gender=Neut|Number=Sing|PronType=Dem,Ind", POS: DET},
"DET__Gender=Neut|Number=Sing|PronType=Ind": {"morph": "Gender=Neut|Number=Sing|PronType=Ind", POS: DET},
"DET__Gender=Neut|Number=Sing|PronType=Tot": {"morph": "Gender=Neut|Number=Sing|PronType=Tot", POS: DET},
"DET__Number=Plur|Polarity=Neg|PronType=Neg": {"morph": "Number=Plur|Polarity=Neg|PronType=Neg", POS: DET},
"DET__Number=Plur|PronType=Art": {"morph": "Number=Plur|PronType=Art", POS: DET},
"DET__Number=Plur|PronType=Ind": {"morph": "Number=Plur|PronType=Ind", POS: DET},
"DET__Number=Plur|PronType=Prs": {"morph": "Number=Plur|PronType=Prs", POS: DET},
"DET__Number=Plur|PronType=Tot": {"morph": "Number=Plur|PronType=Tot", POS: DET},
"DET__PronType=Ind": {"morph": "PronType=Ind", POS: DET},
"DET__PronType=Prs": {"morph": "PronType=Prs", POS: DET},
"NOUN__Abbr=Yes": {"morph": "Abbr=Yes", POS: NOUN},
"NOUN__Abbr=Yes|Case=Gen": {"morph": "Abbr=Yes|Case=Gen", POS: NOUN},
"NOUN__Abbr=Yes|Definite=Def,Ind|Gender=Masc|Number=Plur,Sing": {"morph": "Abbr=Yes|Definite=Def,Ind|Gender=Masc|Number=Plur,Sing", POS: NOUN},
"NOUN__Abbr=Yes|Definite=Def,Ind|Gender=Masc|Number=Sing": {"morph": "Abbr=Yes|Definite=Def,Ind|Gender=Masc|Number=Sing", POS: NOUN},
"NOUN__Abbr=Yes|Definite=Def,Ind|Gender=Neut|Number=Plur,Sing": {"morph": "Abbr=Yes|Definite=Def,Ind|Gender=Neut|Number=Plur,Sing", POS: NOUN},
"NOUN__Abbr=Yes|Gender=Masc": {"morph": "Abbr=Yes|Gender=Masc", POS: NOUN},
"NUM__Case=Gen|Number=Plur|NumType=Card": {"morph": "Case=Gen|Number=Plur|NumType=Card", POS: NUM},
"NUM__Definite=Def|Number=Sing|NumType=Card": {"morph": "Definite=Def|Number=Sing|NumType=Card", POS: NUM},
"NUM__Definite=Def|NumType=Card": {"morph": "Definite=Def|NumType=Card", POS: NUM},
"NUM__Gender=Fem|Number=Sing|NumType=Card": {"morph": "Gender=Fem|Number=Sing|NumType=Card", POS: NUM},
"NUM__Gender=Masc|Number=Sing|NumType=Card": {"morph": "Gender=Masc|Number=Sing|NumType=Card", POS: NUM},
"NUM__Gender=Neut|Number=Sing|NumType=Card": {"morph": "Gender=Neut|Number=Sing|NumType=Card", POS: NUM},
"NUM__Number=Plur|NumType=Card": {"morph": "Number=Plur|NumType=Card", POS: NUM},
"NUM__Number=Sing|NumType=Card": {"morph": "Number=Sing|NumType=Card", POS: NUM},
"NUM__NumType=Card": {"morph": "NumType=Card", POS: NUM},
"PART__Polarity=Neg": {"morph": "Polarity=Neg", POS: PART},
"PRON__Animacy=Hum|Case=Acc|Gender=Fem|Number=Sing|Person=3|PronType=Prs": { "morph": "Animacy=Hum|Case=Acc|Gender=Fem|Number=Sing|Person=3|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Acc|Gender=Masc|Number=Sing|Person=3|PronType=Prs": { "morph": "Animacy=Hum|Case=Acc|Gender=Masc|Number=Sing|Person=3|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Acc|Number=Plur|Person=1|PronType=Prs": {"morph": "Animacy=Hum|Case=Acc|Number=Plur|Person=1|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Acc|Number=Plur|Person=2|PronType=Prs": {"morph": "Animacy=Hum|Case=Acc|Number=Plur|Person=2|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Acc|Number=Sing|Person=1|PronType=Prs": {"morph": "Animacy=Hum|Case=Acc|Number=Sing|Person=1|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Acc|Number=Sing|Person=2|PronType=Prs": {"morph": "Animacy=Hum|Case=Acc|Number=Sing|Person=2|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Gen,Nom|Number=Sing|PronType=Art,Prs": {"morph": "Animacy=Hum|Case=Gen,Nom|Number=Sing|PronType=Art,Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Gen|Number=Sing|PronType=Art,Prs": {"morph": "Animacy=Hum|Case=Gen|Number=Sing|PronType=Art,Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Gender=Fem|Number=Sing|Person=3|PronType=Prs": { "morph": "Animacy=Hum|Case=Nom|Gender=Fem|Number=Sing|Person=3|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs": { "morph": "Animacy=Hum|Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Number=Plur|Person=1|PronType=Prs": {"morph": "Animacy=Hum|Case=Nom|Number=Plur|Person=1|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Number=Plur|Person=2|PronType=Prs": {"morph": "Animacy=Hum|Case=Nom|Number=Plur|Person=2|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Number=Sing|Person=1|PronType=Prs": {"morph": "Animacy=Hum|Case=Nom|Number=Sing|Person=1|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Number=Sing|Person=2|PronType=Prs": {"morph": "Animacy=Hum|Case=Nom|Number=Sing|Person=2|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Case=Nom|Number=Sing|PronType=Prs": {"morph": "Animacy=Hum|Case=Nom|Number=Sing|PronType=Prs", POS: PRON},
"PRON__Animacy=Hum|Number=Plur|PronType=Rcp": {"morph": "Animacy=Hum|Number=Plur|PronType=Rcp", POS: PRON},
"PRON__Animacy=Hum|Number=Sing|PronType=Art,Prs": {"morph": "Animacy=Hum|Number=Sing|PronType=Art,Prs", POS: PRON},
"PRON__Animacy=Hum|Poss=Yes|PronType=Int": {"morph": "Animacy=Hum|Poss=Yes|PronType=Int", POS: PRON},
"PRON__Animacy=Hum|PronType=Int": {"morph": "Animacy=Hum|PronType=Int", POS: PRON},
"PRON__Case=Acc|PronType=Prs|Reflex=Yes": {"morph": "Case=Acc|PronType=Prs|Reflex=Yes", POS: PRON},
"PRON__Gender=Fem,Masc|Number=Sing|Person=3|Polarity=Neg|PronType=Neg,Prs": { "morph": "Gender=Fem,Masc|Number=Sing|Person=3|Polarity=Neg|PronType=Neg,Prs", POS: PRON},
"PRON__Gender=Fem,Masc|Number=Sing|Person=3|PronType=Ind,Prs": {"morph": "Gender=Fem,Masc|Number=Sing|Person=3|PronType=Ind,Prs", POS: PRON},
"PRON__Gender=Fem,Masc|Number=Sing|Person=3|PronType=Prs,Tot": {"morph": "Gender=Fem,Masc|Number=Sing|Person=3|PronType=Prs,Tot", POS: PRON},
"PRON__Gender=Fem|Number=Sing|Poss=Yes|PronType=Prs": {"morph": "Gender=Fem|Number=Sing|Poss=Yes|PronType=Prs", POS: PRON},
"PRON__Gender=Masc|Number=Sing|Poss=Yes|PronType=Prs": {"morph": "Gender=Masc|Number=Sing|Poss=Yes|PronType=Prs", POS: PRON},
"PRON__Gender=Neut|Number=Sing|Person=3|PronType=Ind,Prs": {"morph": "Gender=Neut|Number=Sing|Person=3|PronType=Ind,Prs", POS: PRON},
"PRON__Gender=Neut|Number=Sing|Poss=Yes|PronType=Prs": {"morph": "Gender=Neut|Number=Sing|Poss=Yes|PronType=Prs", POS: PRON},
"PRON__Number=Plur|Person=3|Polarity=Neg|PronType=Neg,Prs": {"morph": "Number=Plur|Person=3|Polarity=Neg|PronType=Neg,Prs", POS: PRON},
"PRON__Number=Plur|Person=3|PronType=Ind,Prs": {"morph": "Number=Plur|Person=3|PronType=Ind,Prs", POS: PRON},
"PRON__Number=Plur|Person=3|PronType=Prs,Tot": {"morph": "Number=Plur|Person=3|PronType=Prs,Tot", POS: PRON},
"PRON__Number=Plur|Poss=Yes|PronType=Prs": {"morph": "Number=Plur|Poss=Yes|PronType=Prs", POS: PRON},
"PRON__Number=Plur|Poss=Yes|PronType=Rcp": {"morph": "Number=Plur|Poss=Yes|PronType=Rcp", POS: PRON},
"PRON__Number=Sing|Polarity=Neg|PronType=Neg": {"morph": "Number=Sing|Polarity=Neg|PronType=Neg", POS: PRON},
"PRON__PronType=Prs": {"morph": "PronType=Prs", POS: PRON},
"PRON__PronType=Rel": {"morph": "PronType=Rel", POS: PRON},
"PROPN__Abbr=Yes": {"morph": "Abbr=Yes", POS: PROPN},
"PROPN__Abbr=Yes|Case=Gen": {"morph": "Abbr=Yes|Case=Gen", POS: PROPN},
"VERB__Abbr=Yes|Mood=Ind|Tense=Pres|VerbForm=Fin": {"morph": "Abbr=Yes|Mood=Ind|Tense=Pres|VerbForm=Fin", POS: VERB},
"VERB__Definite=Ind|Number=Sing|VerbForm=Part": {"morph": "Definite=Ind|Number=Sing|VerbForm=Part", POS: VERB},
}

View File

@ -5039,5 +5039,19 @@ TAG_MAP = {
"punc": {POS: PUNCT},
"v-pcp|M|P": {POS: VERB},
"v-pcp|M|S": {POS: VERB},
"ADJ": {POS: ADJ},
"AUX": {POS: AUX},
"CCONJ": {POS: CCONJ},
"DET": {POS: DET},
"INTJ": {POS: INTJ},
"NUM": {POS: NUM},
"PART": {POS: PART},
"PRON": {POS: PRON},
"PUNCT": {POS: PUNCT},
"SCONJ": {POS: SCONJ},
"SYM": {POS: SYM},
"VERB": {POS: VERB},
"X": {POS: X},
"adv": {POS: ADV},
"_SP": {POS: SPACE},
}

24
spacy/lang/yo/__init__.py Normal file
View File

@ -0,0 +1,24 @@
# coding: utf8
from __future__ import unicode_literals
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...language import Language
from ...attrs import LANG
class YorubaDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters.update(LEX_ATTRS)
lex_attr_getters[LANG] = lambda text: "yo"
stop_words = STOP_WORDS
tokenizer_exceptions = BASE_EXCEPTIONS
class Yoruba(Language):
lang = "yo"
Defaults = YorubaDefaults
__all__ = ["Yoruba"]

26
spacy/lang/yo/examples.py Normal file
View File

@ -0,0 +1,26 @@
# coding: utf8
from __future__ import unicode_literals
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.yo.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
# 1. https://yo.wikipedia.org/wiki/Wikipedia:%C3%80y%E1%BB%8Dk%C3%A0_p%C3%A0t%C3%A0k%C3%AC
# 2.https://yo.wikipedia.org/wiki/Oj%C3%BAew%C3%A9_%C3%80k%E1%BB%8D%CC%81k%E1%BB%8D%CC%81
# 3. https://www.bbc.com/yoruba
sentences = [
"Ìjọba Tanzania fi Ajìjàgbara Ọmọ Orílẹ̀-èdèe Uganda sí àtìmọ́lé",
"Olúṣẹ́gun Ọbásanjọ́, tí ó jẹ́ Ààrẹ ìjọba ológun àná (láti ọdún 1976 sí 1979), tí ó sì tún ṣe Ààrẹ ìjọba alágbádá tí ìbò gbé wọlé (ní ọdún 1999 sí 2007), kúndùn láti máa bu ẹnu àtẹ́ lu àwọn "
"ètò ìjọba Ààrẹ orílẹ̀-èdè Nàìjíríà tí ó jẹ tẹ̀lé e.",
"Akin Alabi rán ẹnu mọ́ agbárá Adárí Òsìsẹ̀, àwọn ọmọ Nàìjíríà dẹnu bò ó",
"Ta ló leè dúró s'ẹ́gbẹ̀ẹ́ Okunnu láì rẹ́rìín?",
"Dídarapọ̀ mọ́n ìpolongo",
"Bi a se n so, omobinrin ni oruko ni ojo kejo bee naa ni omokunrin ni oruko ni ojo kesan.",
"Oríṣìíríṣìí nǹkan ló le yọrí sí orúkọ tí a sọ ọmọ",
"Gbogbo won ni won ni oriki ti won",
]

115
spacy/lang/yo/lex_attrs.py Normal file
View File

@ -0,0 +1,115 @@
# coding: utf8
from __future__ import unicode_literals
import unicodedata
from ...attrs import LIKE_NUM
_num_words = [
"ení",
"oókàn",
"ọ̀kanlá",
"ẹ́ẹdọ́gbọ̀n",
"àádọ́fà",
"ẹ̀walélúɡba",
"egbèje",
"ẹgbàárin",
"èjì",
"eéjì",
"èjìlá",
"ọgbọ̀n,",
"ọgọ́fà",
"ọ̀ọ́dúrún",
"ẹgbẹ̀jọ",
"ẹ̀ẹ́dẹ́ɡbàárùn",
"ẹ̀ta",
"ẹẹ́ta",
"ẹ̀talá",
"aárùndílogójì",
"àádóje",
"irinwó",
"ẹgbẹ̀sàn",
"ẹgbàárùn",
"ẹ̀rin",
"ẹẹ́rin",
"ẹ̀rinlá",
"ogójì",
"ogóje",
"ẹ̀ẹ́dẹ́gbẹ̀ta",
"ẹgbàá",
"ẹgbàájọ",
"àrún",
"aárùn",
"ẹ́ẹdógún",
"àádọ́ta",
"àádọ́jọ",
"ẹgbẹ̀ta",
"ẹgboókànlá",
"ẹgbàawǎ",
"ẹ̀fà",
"ẹẹ́fà",
"ẹẹ́rìndílógún",
"ọgọ́ta",
"ọgọ́jọ",
"ọ̀ọ́dẹ́gbẹ̀rin",
"ẹgbẹ́ẹdógún",
"ọkẹ́marun",
"èje",
"etàdílógún",
"àádọ́rin",
"àádọ́sán",
"ẹgbẹ̀rin",
"ẹgbàajì",
"ẹgbẹ̀ẹgbẹ̀rún",
"ẹ̀jọ",
"ẹẹ́jọ",
"eéjìdílógún",
"ọgọ́rin",
"ọgọsàn",
"ẹ̀ẹ́dẹ́gbẹ̀rún",
"ẹgbẹ́ẹdọ́gbọ̀n",
"ọgọ́rùn ọkẹ́",
"ẹ̀sán",
"ẹẹ́sàn",
"oókàndílógún",
"àádọ́rùn",
"ẹ̀wadilúɡba",
"ẹgbẹ̀rún",
"ẹgbàáta",
"ẹ̀wá",
"ẹẹ́wàá",
"ogún",
"ọgọ́rùn",
"igba",
"ẹgbẹ̀fà",
"ẹ̀ẹ́dẹ́ɡbarin",
]
def strip_accents_text(text):
"""
Converts the string to NFD, separates & returns only the base characters
:param text:
:return: input string without diacritic adornments on base characters
"""
return "".join(
c for c in unicodedata.normalize("NFD", text) if unicodedata.category(c) != "Mn"
)
def like_num(text):
text = text.replace(",", "").replace(".", "")
num_markers = ["", "dọ", "", "dín", "di", "din", "le", "do"]
if any(mark in text for mark in num_markers):
return True
text = strip_accents_text(text)
_num_words_stripped = [strip_accents_text(num) for num in _num_words]
if text.isdigit():
return True
if text in _num_words_stripped or text.lower() in _num_words_stripped:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -0,0 +1,12 @@
# coding: utf8
from __future__ import unicode_literals
# stop words as whitespace-separated list.
# Source: https://raw.githubusercontent.com/dohliam/more-stoplists/master/yo/yo.txt
STOP_WORDS = set(
"a an b bá bí bẹ̀rẹ̀ d e f fún fẹ́ g gbogbo i inú j jù jẹ jẹ́ k kan kì kí kò "
"l láti lè lọ m mi mo máa mọ̀ n ni náà ní nígbà nítorí nǹkan o p padà pé "
"púpọ̀ pẹ̀lú r rẹ̀ s sì sí sínú t ti tí u w wà wá wọn wọ́n y yìí à àti àwọn á "
"è é ì í ò òun ó ù ú ń ńlá ǹ ̀ ́ ̣ ṣ ṣe ṣé ṣùgbọ́n ẹ ẹmọ́ ọ ọjọ́ ọ̀pọ̀lọpọ̀".split()
)

View File

@ -4,19 +4,95 @@ from __future__ import unicode_literals
from ...attrs import LANG
from ...language import Language
from ...tokens import Doc
from ...util import DummyTokenizer
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS
from .tag_map import TAG_MAP
def try_jieba_import(use_jieba):
try:
import jieba
return jieba
except ImportError:
if use_jieba:
msg = (
"Jieba not installed. Either set Chinese.use_jieba = False, "
"or install it https://github.com/fxsjy/jieba"
)
raise ImportError(msg)
class ChineseTokenizer(DummyTokenizer):
def __init__(self, cls, nlp=None):
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
self.use_jieba = cls.use_jieba
self.jieba_seg = try_jieba_import(self.use_jieba)
self.tokenizer = Language.Defaults().create_tokenizer(nlp)
def __call__(self, text):
# use jieba
if self.use_jieba:
jieba_words = list(
[x for x in self.jieba_seg.cut(text, cut_all=False) if x]
)
words = [jieba_words[0]]
spaces = [False]
for i in range(1, len(jieba_words)):
word = jieba_words[i]
if word.isspace():
# second token in adjacent whitespace following a
# non-space token
if spaces[-1]:
words.append(word)
spaces.append(False)
# first space token following non-space token
elif word == " " and not words[-1].isspace():
spaces[-1] = True
# token is non-space whitespace or any whitespace following
# a whitespace token
else:
# extend previous whitespace token with more whitespace
if words[-1].isspace():
words[-1] += word
# otherwise it's a new whitespace token
else:
words.append(word)
spaces.append(False)
else:
words.append(word)
spaces.append(False)
return Doc(self.vocab, words=words, spaces=spaces)
# split into individual characters
words = []
spaces = []
for token in self.tokenizer(text):
if token.text.isspace():
words.append(token.text)
spaces.append(False)
else:
words.extend(list(token.text))
spaces.extend([False] * len(token.text))
spaces[-1] = bool(token.whitespace_)
return Doc(self.vocab, words=words, spaces=spaces)
class ChineseDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters.update(LEX_ATTRS)
lex_attr_getters[LANG] = lambda text: "zh"
use_jieba = True
tokenizer_exceptions = BASE_EXCEPTIONS
stop_words = STOP_WORDS
tag_map = TAG_MAP
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
use_jieba = True
@classmethod
def create_tokenizer(cls, nlp=None):
return ChineseTokenizer(cls, nlp)
class Chinese(Language):
@ -24,26 +100,7 @@ class Chinese(Language):
Defaults = ChineseDefaults # override defaults
def make_doc(self, text):
if self.Defaults.use_jieba:
try:
import jieba
except ImportError:
msg = (
"Jieba not installed. Either set Chinese.use_jieba = False, "
"or install it https://github.com/fxsjy/jieba"
)
raise ImportError(msg)
words = list(jieba.cut(text, cut_all=False))
words = [x for x in words if x]
return Doc(self.vocab, words=words, spaces=[False] * len(words))
else:
words = []
spaces = []
for token in self.tokenizer(text):
words.extend(list(token.text))
spaces.extend([False] * len(token.text))
spaces[-1] = bool(token.whitespace_)
return Doc(self.vocab, words=words, spaces=spaces)
return self.tokenizer(text)
__all__ = ["Chinese"]

View File

@ -1,11 +1,12 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import POS, PUNCT, ADJ, CONJ, CCONJ, NUM, DET, ADV, ADP, X, VERB
from ...symbols import NOUN, PART, INTJ, PRON
from ...symbols import POS, PUNCT, ADJ, SCONJ, CCONJ, NUM, DET, ADV, ADP, X
from ...symbols import NOUN, PART, INTJ, PRON, VERB, SPACE
# The Chinese part-of-speech tagger uses the OntoNotes 5 version of the Penn Treebank tag set.
# We also map the tags to the simpler Google Universal POS tag set.
# The Chinese part-of-speech tagger uses the OntoNotes 5 version of the Penn
# Treebank tag set. We also map the tags to the simpler Universal Dependencies
# v2 tag set.
TAG_MAP = {
"AS": {POS: PART},
@ -38,10 +39,11 @@ TAG_MAP = {
"OD": {POS: NUM},
"DT": {POS: DET},
"CC": {POS: CCONJ},
"CS": {POS: CONJ},
"CS": {POS: SCONJ},
"AD": {POS: ADV},
"JJ": {POS: ADJ},
"P": {POS: ADP},
"PN": {POS: PRON},
"PU": {POS: PUNCT},
"_SP": {POS: SPACE},
}

View File

@ -650,7 +650,7 @@ class Language(object):
kwargs = component_cfg.get(name, {})
kwargs.setdefault("batch_size", batch_size)
if not hasattr(pipe, "pipe"):
examples = _pipe(pipe, examples, kwargs)
examples = _pipe(examples, pipe, kwargs)
else:
examples = pipe.pipe(examples, as_example=True, **kwargs)
for ex in examples:

View File

@ -677,7 +677,9 @@ def _get_attr_values(spec, string_store):
value = string_store.add(value)
elif isinstance(value, bool):
value = int(value)
elif isinstance(value, (dict, int)):
elif isinstance(value, int):
pass
elif isinstance(value, dict):
continue
else:
raise ValueError(Errors.E153.format(vtype=type(value).__name__))

View File

@ -292,13 +292,14 @@ class EntityRuler(object):
self.add_patterns(patterns)
else:
cfg = {}
deserializers = {
deserializers_patterns = {
"patterns": lambda p: self.add_patterns(
srsly.read_jsonl(p.with_suffix(".jsonl"))
),
"cfg": lambda p: cfg.update(srsly.read_json(p)),
)}
deserializers_cfg = {
"cfg": lambda p: cfg.update(srsly.read_json(p))
}
from_disk(path, deserializers, {})
from_disk(path, deserializers_cfg, {})
self.overwrite = cfg.get("overwrite", False)
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr")
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
@ -307,6 +308,7 @@ class EntityRuler(object):
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr
)
from_disk(path, deserializers_patterns, {})
return self
def to_disk(self, path, **kwargs):

View File

@ -13,7 +13,6 @@ from thinc.misc import LayerNorm
from thinc.neural.util import to_categorical
from thinc.neural.util import get_array_module
from spacy.gold import Example
from ..tokens.doc cimport Doc
from ..syntax.nn_parser cimport Parser
from ..syntax.ner cimport BiluoPushDown
@ -24,6 +23,8 @@ from ..vocab cimport Vocab
from .functions import merge_subtokens
from ..language import Language, component
from ..syntax import nonproj
from ..gold import Example
from ..compat import basestring_
from ..attrs import POS, ID
from ..parts_of_speech import X
from ..kb import KnowledgeBase
@ -593,6 +594,8 @@ class Tagger(Pipe):
return build_tagger_model(n_tags, **cfg)
def add_label(self, label, values=None):
if not isinstance(label, basestring_):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
if self.model not in (True, False, None):
@ -1238,6 +1241,8 @@ class TextCategorizer(Pipe):
return float(mean_square_error), d_scores
def add_label(self, label):
if not isinstance(label, basestring_):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
if self.model not in (None, True, False):
@ -1358,7 +1363,7 @@ cdef class EntityRecognizer(Parser):
@component(
"entity_linker",
requires=["doc.ents", "token.ent_iob", "token.ent_type"],
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"]
)
class EntityLinker(Pipe):
@ -1429,13 +1434,20 @@ class EntityLinker(Pipe):
for entity, kb_dict in gold.links.items():
start, end = entity
mention = doc.text[start:end]
# the gold annotations should link to proper entities - if this fails, the dataset is likely corrupt
if not (start, end) in ents_by_offset:
raise RuntimeError(Errors.E188)
ent = ents_by_offset[(start, end)]
for kb_id, value in kb_dict.items():
# Currently only training on the positive instances - we assume there is at least 1 per doc/gold
if value:
try:
sentence_docs.append(ent.sent.as_doc())
except AttributeError:
# Catch the exception when ent.sent is None and provide a user-friendly warning
raise RuntimeError(Errors.E030)
sentence_encodings, bp_context = self.model.begin_update(sentence_docs, drop=drop)
loss, d_scores = self.get_similarity_loss(scores=sentence_encodings, golds=golds)
@ -1523,7 +1535,7 @@ class EntityLinker(Pipe):
if len(doc) > 0:
# Looping through each sentence and each entity
# This may go wrong if there are entities across sentences - because they might not get a KB ID
for sent in doc.ents:
for sent in doc.sents:
sent_doc = sent.as_doc()
# currently, the context is the same for each entity in a sentence (should be refined)
sentence_encoding = self.model([sent_doc])[0]
@ -1704,6 +1716,55 @@ class Sentencizer(Pipe):
return example
return doc
def pipe(self, stream, batch_size=128, n_threads=-1):
for docs in util.minibatch(stream, size=batch_size):
docs = list(docs)
tag_ids = self.predict(docs)
self.set_annotations(docs, tag_ids)
yield from docs
def predict(self, docs):
"""Apply the pipeline's model to a batch of docs, without
modifying them.
"""
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
guesses = [[] for doc in docs]
return guesses
guesses = []
for doc in docs:
start = 0
seen_period = False
doc_guesses = [False] * len(doc)
doc_guesses[0] = True
for i, token in enumerate(doc):
is_in_punct_chars = token.text in self.punct_chars
if seen_period and not token.is_punct and not is_in_punct_chars:
doc_guesses[start] = True
start = token.i
seen_period = False
elif is_in_punct_chars:
seen_period = True
if start < len(doc):
doc_guesses[start] = True
guesses.append(doc_guesses)
return guesses
def set_annotations(self, docs, batch_tag_ids, tensors=None):
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef int idx = 0
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[i]
for j, tag_id in enumerate(doc_tag_ids):
# Don't clobber existing sentence boundaries
if doc.c[j].sent_start == 0:
if tag_id:
doc.c[j].sent_start = 1
else:
doc.c[j].sent_start = -1
def to_bytes(self, **kwargs):
"""Serialize the sentencizer to a bytestring.

View File

@ -269,7 +269,9 @@ class Scorer(object):
gold_tags = set()
gold_sent_starts = set()
gold_ents = set(tags_to_entities(orig.entities))
for id_, tag, head, dep, sent_start in zip(orig.ids, orig.tags, orig.heads, orig.deps, orig.sent_starts):
for id_, tag, head, dep, sent_start in zip(
orig.ids, orig.tags, orig.heads, orig.deps, orig.sent_starts
):
gold_tags.add((id_, tag))
if sent_start:
gold_sent_starts.add(id_)
@ -308,8 +310,10 @@ class Scorer(object):
self.labelled_per_dep[token.dep_.lower()] = PRFScore()
if token.dep_.lower() not in cand_deps_per_dep:
cand_deps_per_dep[token.dep_.lower()] = set()
cand_deps_per_dep[token.dep_.lower()].add((gold_i, gold_head, token.dep_.lower()))
if "-" not in orig.entities:
cand_deps_per_dep[token.dep_.lower()].add(
(gold_i, gold_head, token.dep_.lower())
)
if "-" not in [token[-1] for token in gold.orig_annot]:
# Find all NER labels in gold and doc
ent_labels = set([x[0] for x in gold_ents] + [k.label_ for k in doc.ents])
# Set up all labels for per type scoring and prepare gold per type
@ -342,7 +346,9 @@ class Scorer(object):
self.sent_starts.score_set(cand_sent_starts, gold_sent_starts)
self.labelled.score_set(cand_deps, gold_deps)
for dep in self.labelled_per_dep:
self.labelled_per_dep[dep].score_set(cand_deps_per_dep.get(dep, set()), gold_deps_per_dep.get(dep, set()))
self.labelled_per_dep[dep].score_set(
cand_deps_per_dep.get(dep, set()), gold_deps_per_dep.get(dep, set())
)
self.unlabelled.score_set(
set(item[:2] for item in cand_deps), set(item[:2] for item in gold_deps)
)

View File

@ -69,7 +69,8 @@ cdef class ParserBeam(object):
cdef StateC* st
for state in states:
beam = Beam(self.moves.n_moves, width, min_density=density)
beam.initialize(self.moves.init_beam_state, state.c.length,
beam.initialize(self.moves.init_beam_state,
self.moves.del_beam_state, state.c.length,
state.c._sent)
for i in range(beam.width):
st = <StateC*>beam.at(i)

View File

@ -42,11 +42,17 @@ cdef WeightsC get_c_weights(model) except *:
cdef precompute_hiddens state2vec = model.state2vec
output.feat_weights = state2vec.get_feat_weights()
output.feat_bias = <const float*>state2vec.bias.data
cdef np.ndarray vec2scores_W = model.vec2scores.W
cdef np.ndarray vec2scores_b = model.vec2scores.b
cdef np.ndarray class_mask = model._class_mask
cdef np.ndarray vec2scores_W
cdef np.ndarray vec2scores_b
if model.vec2scores is None:
output.hidden_weights = NULL
output.hidden_bias = NULL
else:
vec2scores_W = model.vec2scores.W
vec2scores_b = model.vec2scores.b
output.hidden_weights = <const float*>vec2scores_W.data
output.hidden_bias = <const float*>vec2scores_b.data
cdef np.ndarray class_mask = model._class_mask
output.seen_classes = <const float*>class_mask.data
return output
@ -54,6 +60,9 @@ cdef WeightsC get_c_weights(model) except *:
cdef SizesC get_c_sizes(model, int batch_size) except *:
cdef SizesC output
output.states = batch_size
if model.vec2scores is None:
output.classes = model.state2vec.nO
else:
output.classes = model.vec2scores.nO
output.hiddens = model.state2vec.nO
output.pieces = model.state2vec.nP
@ -105,11 +114,12 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
cdef void predict_states(ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil:
cdef double one = 1.0
resize_activations(A, n)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
for i in range(n.states):
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
sum_state_features(A.unmaxed,
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
for i in range(n.states):
@ -120,7 +130,9 @@ cdef void predict_states(ActivationsC* A, StateC** states,
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
memset(A.scores, 0, n.states * n.classes * sizeof(float))
cdef double one = 1.0
if W.hidden_weights == NULL:
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
else:
# Compute hidden-to-output
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
n.states, n.classes, n.hiddens, one,
@ -219,7 +231,9 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
class ParserModel(Model):
def __init__(self, tok2vec, lower_model, upper_model, unseen_classes=None):
Model.__init__(self)
self._layers = [tok2vec, lower_model, upper_model]
self._layers = [tok2vec, lower_model]
if upper_model is not None:
self._layers.append(upper_model)
self.unseen_classes = set()
if unseen_classes:
for class_ in unseen_classes:
@ -234,6 +248,8 @@ class ParserModel(Model):
return step_model, finish_parser_update
def resize_output(self, new_output):
if len(self._layers) == 2:
return
if new_output == self.upper.nO:
return
smaller = self.upper
@ -275,11 +291,23 @@ class ParserModel(Model):
class ParserStepModel(Model):
def __init__(self, docs, layers, unseen_classes=None, drop=0.):
self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop)
if layers[1].nP >= 2:
activation = "maxout"
elif len(layers) == 2:
activation = None
else:
activation = "relu"
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
drop=drop)
activation=activation, drop=drop)
if len(layers) == 3:
self.vec2scores = layers[-1]
self.cuda_stream = util.get_cuda_stream()
else:
self.vec2scores = None
self.cuda_stream = util.get_cuda_stream(non_blocking=True)
self.backprops = []
if self.vec2scores is None:
self._class_mask = numpy.zeros((self.state2vec.nO,), dtype='f')
else:
self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f')
self._class_mask.fill(1)
if unseen_classes is not None:
@ -302,10 +330,15 @@ class ParserStepModel(Model):
def begin_update(self, states, drop=0.):
token_ids = self.get_token_ids(states)
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
if self.vec2scores is not None:
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
if mask is not None:
vector *= mask
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
else:
scores = NumpyOps().asarray(vector)
get_d_vector = lambda d_scores, sgd=None: d_scores
mask = None
# If the class is unseen, make sure its score is minimum
scores[:, self._class_mask == 0] = numpy.nanmin(scores)
@ -342,12 +375,12 @@ class ParserStepModel(Model):
return ids
def make_updates(self, sgd):
# Tells CUDA to block, so our async copies complete.
if self.cuda_stream is not None:
self.cuda_stream.synchronize()
# Add a padding vector to the d_tokvecs gradient, so that missing
# values don't affect the real gradient.
d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
# Tells CUDA to block, so our async copies complete.
if self.cuda_stream is not None:
self.cuda_stream.synchronize()
for ids, d_vector, bp_vector in self.backprops:
d_state_features = bp_vector((d_vector, ids), sgd=sgd)
ids = ids.flatten()
@ -385,9 +418,10 @@ cdef class precompute_hiddens:
cdef np.ndarray bias
cdef object _cuda_stream
cdef object _bp_hiddens
cdef object activation
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
drop=0.):
activation="maxout", drop=0.):
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
cdef np.ndarray cached
if not isinstance(gpu_cached, numpy.ndarray):
@ -405,6 +439,8 @@ cdef class precompute_hiddens:
self.nP = getattr(lower_model, 'nP', 1)
self.nO = cached.shape[2]
self.ops = lower_model.ops
assert activation in (None, "relu", "maxout")
self.activation = activation
self._is_synchronized = False
self._cuda_stream = cuda_stream
self._cached = cached
@ -417,7 +453,7 @@ cdef class precompute_hiddens:
return <float*>self._cached.data
def __call__(self, X):
return self.begin_update(X)[0]
return self.begin_update(X, drop=None)[0]
def begin_update(self, token_ids, drop=0.):
cdef np.ndarray state_vector = numpy.zeros(
@ -450,28 +486,35 @@ cdef class precompute_hiddens:
else:
ops = CupyOps()
if self.nP == 1:
if self.activation == "maxout":
state_vector, mask = ops.maxout(state_vector)
else:
state_vector = state_vector.reshape(state_vector.shape[:-1])
if self.activation == "relu":
mask = state_vector >= 0.
state_vector *= mask
else:
state_vector, mask = ops.maxout(state_vector)
mask = None
def backprop_nonlinearity(d_best, sgd=None):
if isinstance(d_best, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
if mask is not None:
mask_ = ops.asarray(mask)
# This will usually be on GPU
d_best = ops.asarray(d_best)
# Fix nans (which can occur from unseen classes.)
d_best[ops.xp.isnan(d_best)] = 0.
if self.nP == 1:
if self.activation == "maxout":
mask_ = ops.asarray(mask)
return ops.backprop_maxout(d_best, mask_, self.nP)
elif self.activation == "relu":
mask_ = ops.asarray(mask)
d_best *= mask_
d_best = d_best.reshape((d_best.shape + (1,)))
return d_best
else:
return ops.backprop_maxout(d_best, mask_, self.nP)
return d_best.reshape((d_best.shape + (1,)))
return state_vector, backprop_nonlinearity

View File

@ -100,10 +100,30 @@ cdef cppclass StateC:
free(this.shifted - PADDING)
void set_context_tokens(int* ids, int n) nogil:
if n == 2:
if n == 1:
if this.B(0) >= 0:
ids[0] = this.B(0)
else:
ids[0] = -1
elif n == 2:
ids[0] = this.B(0)
ids[1] = this.S(0)
if n == 8:
elif n == 3:
if this.B(0) >= 0:
ids[0] = this.B(0)
else:
ids[0] = -1
# First word of entity, if any
if this.entity_is_open():
ids[1] = this.E(0)
else:
ids[1] = -1
# Last word of entity, if within entity
if ids[0] == -1 or ids[1] == -1:
ids[2] = -1
else:
ids[2] = ids[0] - 1
elif n == 8:
ids[0] = this.B(0)
ids[1] = this.B(1)
ids[2] = this.S(0)

View File

@ -324,10 +324,16 @@ cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
return <void*>st
cdef int _del_state(Pool mem, void* state, void* x) except -1:
cdef StateC* st = <StateC*>state
del st
cdef class ArcEager(TransitionSystem):
def __init__(self, *args, **kwargs):
TransitionSystem.__init__(self, *args, **kwargs)
self.init_beam_state = _init_state
self.del_beam_state = _del_state
@classmethod
def get_actions(cls, **kwargs):

View File

@ -22,7 +22,7 @@ from thinc.extra.search cimport Beam
from thinc.api import chain, clone
from thinc.v2v import Model, Maxout, Affine
from thinc.misc import LayerNorm
from thinc.neural.ops import CupyOps
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec
import srsly
@ -62,13 +62,17 @@ cdef class Parser:
t2v_pieces = util.env_opt('cnn_maxout_pieces', cfg.get('cnn_maxout_pieces', 3))
bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0))
self_attn_depth = util.env_opt('self_attn_depth', cfg.get('self_attn_depth', 0))
if depth != 1:
nr_feature_tokens = cfg.get("nr_feature_tokens", cls.nr_feature)
if depth not in (0, 1):
raise ValueError(TempErrors.T004.format(value=depth))
parser_maxout_pieces = util.env_opt('parser_maxout_pieces',
cfg.get('maxout_pieces', 2))
token_vector_width = util.env_opt('token_vector_width',
cfg.get('token_vector_width', 96))
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64))
if depth == 0:
hidden_width = nr_class
parser_maxout_pieces = 1
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000))
pretrained_vectors = cfg.get('pretrained_vectors', None)
tok2vec = Tok2Vec(token_vector_width, embed_size,
@ -81,16 +85,19 @@ cdef class Parser:
tok2vec = chain(tok2vec, flatten)
tok2vec.nO = token_vector_width
lower = PrecomputableAffine(hidden_width,
nF=cls.nr_feature, nI=token_vector_width,
nF=nr_feature_tokens, nI=token_vector_width,
nP=parser_maxout_pieces)
lower.nP = parser_maxout_pieces
if depth == 1:
with Model.use_device('cpu'):
upper = Affine(nr_class, hidden_width, drop_factor=0.0)
upper.W *= 0
else:
upper = None
cfg = {
'nr_class': nr_class,
'nr_feature_tokens': nr_feature_tokens,
'hidden_depth': depth,
'token_vector_width': token_vector_width,
'hidden_width': hidden_width,
@ -134,6 +141,7 @@ cdef class Parser:
if 'beam_update_prob' not in cfg:
cfg['beam_update_prob'] = util.env_opt('beam_update_prob', 1.0)
cfg.setdefault('cnn_maxout_pieces', 3)
cfg.setdefault("nr_feature_tokens", self.nr_feature)
self.cfg = cfg
self.model = model
self._multitasks = []
@ -308,7 +316,7 @@ cdef class Parser:
token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature),
dtype='i', order='C')
cdef int* c_ids
cdef int nr_feature = self.nr_feature
cdef int nr_feature = self.cfg["nr_feature_tokens"]
cdef int n_states
model = self.model(docs)
todo = [beam for beam in beams if not beam.is_done]
@ -512,7 +520,7 @@ cdef class Parser:
new_golds.append(gold)
model, finish_update = self.model.begin_update(docs, drop=drop)
states_d_scores, backprops, beams = _beam_utils.update_beam(
self.moves, self.nr_feature, 10000, states, new_golds, model.state2vec,
self.moves, self.cfg["nr_feature_tokens"], 10000, states, golds, model.state2vec,
model.vec2scores, width, drop=drop, losses=losses,
beam_density=beam_density)
for i, d_scores in enumerate(states_d_scores):

View File

@ -33,6 +33,8 @@ ctypedef int (*do_func_t)(StateC* state, attr_t label) nogil
ctypedef void* (*init_state_t)(Pool mem, int length, void* tokens) except NULL
ctypedef int (*del_state_t)(Pool mem, void* state, void* extra_args) except -1
cdef class TransitionSystem:
cdef Pool mem
cdef StringStore strings
@ -42,6 +44,7 @@ cdef class TransitionSystem:
cdef public attr_t root_label
cdef public freqs
cdef init_state_t init_beam_state
cdef del_state_t del_beam_state
cdef public object labels
cdef int initialize_state(self, StateC* state) nogil

View File

@ -30,6 +30,11 @@ cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
return <void*>st
cdef int _del_state(Pool mem, void* state, void* x) except -1:
cdef StateC* st = <StateC*>state
del st
cdef class TransitionSystem:
def __init__(self, StringStore string_table, labels_by_action=None, min_freq=None):
self.mem = Pool()
@ -44,6 +49,7 @@ cdef class TransitionSystem:
self.initialize_actions(labels_by_action, min_freq=min_freq)
self.root_label = self.strings.add('ROOT')
self.init_beam_state = _init_state
self.del_beam_state = _del_state
def __reduce__(self):
return (self.__class__, (self.strings, self.labels), None, None)
@ -72,7 +78,8 @@ cdef class TransitionSystem:
for doc in docs:
beam = Beam(self.n_moves, beam_width, min_density=beam_density)
beam.initialize(self.init_beam_state, doc.length, doc.c)
beam.initialize(self.init_beam_state, self.del_beam_state,
doc.length, doc.c)
for i in range(beam.width):
state = <StateC*>beam.at(i)
state.offset = offset

View File

@ -125,7 +125,7 @@ def it_tokenizer():
@pytest.fixture(scope="session")
def ja_tokenizer():
pytest.importorskip("MeCab")
pytest.importorskip("fugashi")
return get_lang_class("ja").Defaults.create_tokenizer()
@ -218,3 +218,15 @@ def uk_tokenizer():
@pytest.fixture(scope="session")
def ur_tokenizer():
return get_lang_class("ur").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def yo_tokenizer():
return get_lang_class("yo").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def zh_tokenizer():
pytest.importorskip("jieba")
return get_lang_class("zh").Defaults.create_tokenizer()

View File

@ -183,3 +183,18 @@ def test_doc_retokenizer_split_lex_attrs(en_vocab):
retokenizer.split(doc[0], ["Los", "Angeles"], heads, attrs=attrs)
assert doc[0].is_stop
assert not doc[1].is_stop
def test_doc_retokenizer_realloc(en_vocab):
"""#4604: realloc correctly when new tokens outnumber original tokens"""
text = "Hyperglycemic adverse events following antipsychotic drug administration in the"
doc = Doc(en_vocab, words=text.split()[:-1])
with doc.retokenize() as retokenizer:
token = doc[0]
heads = [(token, 0)] * len(token)
retokenizer.split(doc[token.i], list(token.text), heads=heads)
doc = Doc(en_vocab, words=text.split())
with doc.retokenize() as retokenizer:
token = doc[0]
heads = [(token, 0)] * len(token)
retokenizer.split(doc[token.i], list(token.text), heads=heads)

View File

@ -32,6 +32,24 @@ def doc_not_parsed(en_tokenizer):
return doc
@pytest.mark.parametrize(
"i_sent,i,j,text",
[
(0, 0, len("This is a"), "This is a"),
(1, 0, len("This is another"), "This is another"),
(2, len("And "), len("And ") + len("a third"), "a third"),
(0, 1, 2, None),
],
)
def test_char_span(doc, i_sent, i, j, text):
sents = list(doc.sents)
span = sents[i_sent].char_span(i, j)
if not text:
assert not span
else:
assert span.text == text
def test_spans_sent_spans(doc):
sents = list(doc.sents)
assert sents[0].start == 0

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals
import pytest
import re
from spacy.lang.en import English
from spacy.tokenizer import Tokenizer
from spacy.util import compile_prefix_regex, compile_suffix_regex
@ -19,13 +20,14 @@ def custom_en_tokenizer(en_vocab):
r"[\[\]!&:,()\*—–\/-]",
]
infix_re = compile_infix_regex(custom_infixes)
token_match_re = re.compile("a-b")
return Tokenizer(
en_vocab,
English.Defaults.tokenizer_exceptions,
prefix_re.search,
suffix_re.search,
infix_re.finditer,
token_match=None,
token_match=token_match_re.match,
)
@ -74,3 +76,81 @@ def test_en_customized_tokenizer_handles_infixes(custom_en_tokenizer):
"Megaregion",
".",
]
def test_en_customized_tokenizer_handles_token_match(custom_en_tokenizer):
sentence = "The 8 and 10-county definitions a-b not used for the greater Southern California Megaregion."
context = [word.text for word in custom_en_tokenizer(sentence)]
assert context == [
"The",
"8",
"and",
"10",
"-",
"county",
"definitions",
"a-b",
"not",
"used",
"for",
"the",
"greater",
"Southern",
"California",
"Megaregion",
".",
]
def test_en_customized_tokenizer_handles_rules(custom_en_tokenizer):
sentence = "The 8 and 10-county definitions are not used for the greater Southern California Megaregion. :)"
context = [word.text for word in custom_en_tokenizer(sentence)]
assert context == [
"The",
"8",
"and",
"10",
"-",
"county",
"definitions",
"are",
"not",
"used",
"for",
"the",
"greater",
"Southern",
"California",
"Megaregion",
".",
":)",
]
def test_en_customized_tokenizer_handles_rules_property(custom_en_tokenizer):
sentence = "The 8 and 10-county definitions are not used for the greater Southern California Megaregion. :)"
rules = custom_en_tokenizer.rules
del rules[":)"]
custom_en_tokenizer.rules = rules
context = [word.text for word in custom_en_tokenizer(sentence)]
assert context == [
"The",
"8",
"and",
"10",
"-",
"county",
"definitions",
"are",
"not",
"used",
"for",
"the",
"greater",
"Southern",
"California",
"Megaregion",
".",
":",
")",
]

View File

@ -0,0 +1,27 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
@pytest.mark.parametrize(
"text,match",
[
("10", True),
("1", True),
("10000", True),
("10,00", True),
("-999,0", True),
("yksi", True),
("kolmetoista", True),
("viisikymmentä", True),
("tuhat", True),
("1/2", True),
("hevonen", False),
(",", False),
],
)
def test_fi_lex_attrs_like_number(fi_tokenizer, text, match):
tokens = fi_tokenizer(text)
assert len(tokens) == 1
assert tokens[0].like_num == match

View File

@ -12,9 +12,23 @@ ABBREVIATION_TESTS = [
("Paino on n. 2.2 kg", ["Paino", "on", "n.", "2.2", "kg"]),
]
HYPHENATED_TESTS = [
(
"1700-luvulle sijoittuva taide-elokuva",
["1700-luvulle", "sijoittuva", "taide-elokuva"]
)
]
@pytest.mark.parametrize("text,expected_tokens", ABBREVIATION_TESTS)
def test_fi_tokenizer_handles_testcases(fi_tokenizer, text, expected_tokens):
def test_fi_tokenizer_abbreviations(fi_tokenizer, text, expected_tokens):
tokens = fi_tokenizer(text)
token_list = [token.text for token in tokens if not token.is_space]
assert expected_tokens == token_list
@pytest.mark.parametrize("text,expected_tokens", HYPHENATED_TESTS)
def test_fi_tokenizer_hyphenated_words(fi_tokenizer, text, expected_tokens):
tokens = fi_tokenizer(text)
token_list = [token.text for token in tokens if not token.is_space]
assert expected_tokens == token_list

View File

@ -3,8 +3,24 @@ from __future__ import unicode_literals
import pytest
@pytest.mark.parametrize("text", ["z.B.", "Jan."])
def test_lb_tokenizer_handles_abbr(lb_tokenizer, text):
tokens = lb_tokenizer(text)
assert len(tokens) == 1
@pytest.mark.parametrize("text", ["d'Saach", "d'Kanner", "dWelt", "dSuen"])
def test_lb_tokenizer_splits_contractions(lb_tokenizer, text):
tokens = lb_tokenizer(text)
assert len(tokens) == 2
def test_lb_tokenizer_handles_exc_in_text(lb_tokenizer):
text = "Mee 't ass net evident, d'Liewen."
tokens = lb_tokenizer(text)
assert len(tokens) == 9
assert tokens[1].text == "'t"
assert tokens[1].lemma_ == "et"
@pytest.mark.parametrize("text,norm", [("dass", "datt"), ("viläicht", "vläicht")])
def test_lb_norm_exceptions(lb_tokenizer, text, norm):
tokens = lb_tokenizer(text)
assert tokens[0].norm_ == norm

View File

@ -5,18 +5,10 @@ import pytest
def test_lb_tokenizer_handles_long_text(lb_tokenizer):
text = """Den Nordwand an d'Sonn
An der Zäit hunn sech den Nordwand an dSonn gestridden, wie vun hinnen zwee wuel méi staark wier, wéi e Wanderer, deen an ee waarme Mantel agepak war, iwwert de Wee koum. Si goufen sech eens, dass deejéinege fir de Stäerkste gëlle sollt, deen de Wanderer forcéiere géif, säi Mantel auszedoen.",
Den Nordwand huet mat aller Force geblosen, awer wat e méi geblosen huet, wat de Wanderer sech méi a säi Mantel agewéckelt huet. Um Enn huet den Nordwand säi Kampf opginn.
Dunn huet dSonn dLoft mat hire frëndleche Strale gewiermt, a schonn no kuerzer Zäit huet de Wanderer säi Mantel ausgedoen.
Do huet den Nordwand missen zouginn, dass dSonn vun hinnen zwee de Stäerkste wier."""
text = """Den Nordwand an d'Sonn An der Zäit hunn sech den Nordwand an d'Sonn gestridden, wie vun hinnen zwee wuel méi staark wier, wéi e Wanderer, deen an ee waarme Mantel agepak war, iwwert de Wee koum. Si goufen sech eens, dass deejéinege fir de Stäerkste gëlle sollt, deen de Wanderer forcéiere géif, säi Mantel auszedoen. Den Nordwand huet mat aller Force geblosen, awer wat e méi geblosen huet, wat de Wanderer sech méi a säi Mantel agewéckelt huet. Um Enn huet den Nordwand säi Kampf opginn. Dunn huet d'Sonn d'Loft mat hire frëndleche Strale gewiermt, a schonn no kuerzer Zäit huet de Wanderer säi Mantel ausgedoen. Do huet den Nordwand missen zouginn, dass d'Sonn vun hinnen zwee de Stäerkste wier."""
tokens = lb_tokenizer(text)
assert len(tokens) == 143
assert len(tokens) == 142
@pytest.mark.parametrize(
@ -24,6 +16,7 @@ Do huet den Nordwand missen zouginn, dass dSonn vun hinnen zwee de Stäerkste
[
("»Wat ass mat mir geschitt?«, huet hie geduecht.", 13),
("“Dëst fréi Opstoen”, denkt hien, “mécht ee ganz duercherneen. ", 15),
("Am Grand-Duché ass d'Liewen schéin, mee 't gëtt ze vill Autoen.", 14)
],
)
def test_lb_tokenizer_handles_examples(lb_tokenizer, text, length):

View File

@ -11,7 +11,7 @@ from spacy.util import get_lang_class
LANGUAGES = ["af", "ar", "bg", "bn", "ca", "cs", "da", "de", "el", "en", "es",
"et", "fa", "fi", "fr", "ga", "he", "hi", "hr", "hu", "id", "is",
"it", "kn", "lt", "lv", "nb", "nl", "pl", "pt", "ro", "si", "sk",
"sl", "sq", "sr", "sv", "ta", "te", "tl", "tr", "tt", "ur"]
"sl", "sq", "sr", "sv", "ta", "te", "tl", "tr", "tt", "ur", 'yo']
# fmt: on

View File

View File

@ -0,0 +1,32 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.lang.yo.lex_attrs import like_num
def test_yo_tokenizer_handles_long_text(yo_tokenizer):
text = """Àwọn ọmọ ìlú tí wọ́n ń ṣàmúlò ayélujára ti bẹ̀rẹ̀ ìkọkúkọ sórí àwòrán ààrẹ Nkurunziza nínú ìfẹ̀hónúhàn pẹ̀lú àmì ìdámọ̀: Nkurunziza àti Burundi:
Ọmọ ilé ̀kọ́ gíga ̀wọ̀n fún kíkọ ìkọkúkọ orí àwòrán Ààrẹ .
mo ṣe èyí Burundi , ó ṣe é ṣe a fi àtìmọ́
Ìjọba Burundi fi akẹ́kọ̀́bìnrin àtìmọ́ látàrí ̀sùn ìkọkúkọ orí àwòrán ààrẹ. A túwíìtì àwòrán ìkọkúkọ wa ìbánikẹ́dùn ìṣẹ̀lẹ̀ náà.
Wọ́n a dán an , a kọ nǹkan orí àwòrán ààrẹ mo ṣe bẹ́̀. Mo ìgbóyà wípé ẹnikẹ́ni mi níbí.
Ìfòfinlíle àtakò"""
tokens = yo_tokenizer(text)
assert len(tokens) == 121
@pytest.mark.parametrize(
"text,match",
[("ení", True), ("ogun", True), ("mewadinlogun", True), ("ten", False)],
)
def test_lex_attrs_like_number(yo_tokenizer, text, match):
tokens = yo_tokenizer(text)
assert len(tokens) == 1
assert tokens[0].like_num == match
@pytest.mark.parametrize("word", ["eji", "ejila", "ogun", "aárùn"])
def test_yo_lex_attrs_capitals(word):
assert like_num(word)
assert like_num(word.upper())

View File

View File

@ -0,0 +1,25 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
@pytest.mark.parametrize(
"text,match",
[
("10", True),
("1", True),
("999.0", True),
("", True),
("", True),
("", True),
("十一", True),
("", False),
(",", False),
],
)
def test_lex_attrs_like_number(zh_tokenizer, text, match):
tokens = zh_tokenizer(text)
assert len(tokens) == 1
assert tokens[0].like_num == match

View File

@ -0,0 +1,31 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
# fmt: off
TOKENIZER_TESTS = [
("作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。",
['作为', '语言', '而言', '', '', '世界', '使用', '', '数最多',
'', '语言', '', '目前', '世界', '', '五分之一', '人口', '',
'', '母语', '']),
]
# fmt: on
@pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS)
def test_zh_tokenizer(zh_tokenizer, text, expected_tokens):
zh_tokenizer.use_jieba = False
tokens = [token.text for token in zh_tokenizer(text)]
assert tokens == list(text)
zh_tokenizer.use_jieba = True
tokens = [token.text for token in zh_tokenizer(text)]
assert tokens == expected_tokens
def test_extra_spaces(zh_tokenizer):
# note: three spaces after "I"
tokens = zh_tokenizer("I like cheese.")
assert tokens[1].orth_ == " "

View File

@ -259,6 +259,27 @@ def test_block_ner():
assert [token.ent_type_ for token in doc] == expected_types
def test_change_number_features():
# Test the default number features
nlp = English()
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner)
ner.add_label("PERSON")
nlp.begin_training()
assert ner.model.lower.nF == ner.nr_feature
# Test we can change it
nlp = English()
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner)
ner.add_label("PERSON")
nlp.begin_training(
component_cfg={"ner": {"nr_feature_tokens": 3, "token_vector_width": 128}}
)
assert ner.model.lower.nF == 3
# Test the model runs
nlp("hello world")
class BlockerComponent1(object):
name = "my_blocker"

View File

@ -148,3 +148,20 @@ def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
assert tokens[4].left_edge.i == 0
assert tokens[4].right_edge.i == 4
assert tokens[4].head.i == 4
def test_parser_set_sent_starts(en_vocab):
words = ['Ein', 'Satz', '.', 'Außerdem', 'ist', 'Zimmer', 'davon', 'überzeugt', ',', 'dass', 'auch', 'epige-', '\n', 'netische', 'Mechanismen', 'eine', 'Rolle', 'spielen', ',', 'also', 'Vorgänge', ',', 'die', '\n', 'sich', 'darauf', 'auswirken', ',', 'welche', 'Gene', 'abgelesen', 'werden', 'und', '\n', 'welche', 'nicht', '.', '\n']
heads = [1, 0, -1, 27, 0, -1, 1, -3, -1, 8, 4, 3, -1, 1, 3, 1, 1, -11, -1, 1, -9, -1, 4, -1, 2, 1, -6, -1, 1, 2, 1, -6, -1, -1, -17, -31, -32, -1]
deps = ['nk', 'ROOT', 'punct', 'mo', 'ROOT', 'sb', 'op', 'pd', 'punct', 'cp', 'mo', 'nk', '', 'nk', 'sb', 'nk', 'oa', 're', 'punct', 'mo', 'app', 'punct', 'sb', '', 'oa', 'op', 'rc', 'punct', 'nk', 'sb', 'oc', 're', 'cd', '', 'oa', 'ng', 'punct', '']
doc = get_doc(
en_vocab, words=words, deps=deps, heads=heads
)
for i in range(len(words)):
if i == 0 or i == 3:
assert doc[i].is_sent_start == True
else:
assert doc[i].is_sent_start == None
for sent in doc.sents:
for token in sent:
assert token.head in sent

View File

@ -5,6 +5,7 @@ import pytest
import spacy
from spacy.pipeline import Sentencizer
from spacy.tokens import Doc
from spacy.lang.en import English
def test_sentencizer(en_vocab):
@ -17,6 +18,17 @@ def test_sentencizer(en_vocab):
assert len(list(doc.sents)) == 2
def test_sentencizer_pipe():
texts = ["Hello! This is a test.", "Hi! This is a test."]
nlp = English()
nlp.add_pipe(nlp.create_pipe("sentencizer"))
for doc in nlp.pipe(texts):
assert doc.is_sentenced
sent_starts = [t.is_sent_start for t in doc]
assert sent_starts == [True, False, True, False, False, False, False]
assert len(list(doc.sents)) == 2
@pytest.mark.parametrize(
"words,sent_starts,n_sents",
[

View File

@ -0,0 +1,14 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.language import Language
from spacy.pipeline import Tagger
def test_label_types():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("tagger"))
nlp.get_pipe("tagger").add_label("A")
with pytest.raises(ValueError):
nlp.get_pipe("tagger").add_label(9)

View File

@ -62,3 +62,11 @@ def test_textcat_learns_multilabel():
assert score < 0.5
else:
assert score > 0.5
def test_label_types():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("textcat"))
nlp.get_pipe("textcat").add_label("answer")
with pytest.raises(ValueError):
nlp.get_pipe("textcat").add_label(9)

View File

@ -177,7 +177,6 @@ def test_issue3328(en_vocab):
assert matched_texts == ["Hello", "how", "you", "doing"]
@pytest.mark.xfail
def test_issue3331(en_vocab):
"""Test that duplicate patterns for different rules result in multiple
matches, one per rule.
@ -328,6 +327,7 @@ def test_issue3449():
assert t3[5].text == "I"
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue3456():
# this crashed because of a padding error in layer.ops.unflatten in thinc
nlp = English()

View File

@ -2,8 +2,10 @@
from __future__ import unicode_literals
from spacy.lang.en import English
import pytest
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue3880():
"""Test that `nlp.pipe()` works when an empty string ends the batch.

View File

@ -3,8 +3,10 @@ from __future__ import unicode_literals
from spacy.lang.en import English
from spacy.util import minibatch, compounding
import pytest
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue4348():
"""Test that training the tagger with empty data, doesn't throw errors"""

View File

@ -3,9 +3,9 @@ from __future__ import unicode_literals
import srsly
from spacy.gold import GoldCorpus
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
from ..util import make_tempdir
def test_issue4402():

View File

@ -1,7 +1,6 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
from mock import Mock
from spacy.matcher import DependencyMatcher
from ..util import get_doc
@ -11,8 +10,14 @@ def test_issue4590(en_vocab):
"""Test that matches param in on_match method are the same as matches run with no on_match method"""
pattern = [
{"SPEC": {"NODE_NAME": "jumped"}, "PATTERN": {"ORTH": "jumped"}},
{"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}},
{"SPEC": {"NODE_NAME": "quick", "NBOR_RELOP": ".", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}},
{
"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"},
"PATTERN": {"ORTH": "fox"},
},
{
"SPEC": {"NODE_NAME": "quick", "NBOR_RELOP": ".", "NBOR_NAME": "jumped"},
"PATTERN": {"ORTH": "fox"},
},
]
on_match = Mock()
@ -31,4 +36,3 @@ def test_issue4590(en_vocab):
on_match_args = on_match.call_args
assert on_match_args[0][3] == matches

View File

@ -0,0 +1,65 @@
# coding: utf-8
from __future__ import unicode_literals
from spacy.lang.en import English
from spacy.pipeline import EntityRuler
from ..util import make_tempdir
def test_issue4651_with_phrase_matcher_attr():
"""Test that the EntityRuler PhraseMatcher is deserialize correctly using
the method from_disk when the EntityRuler argument phrase_matcher_attr is
specified.
"""
text = "Spacy is a python library for nlp"
nlp = English()
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER")
patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
doc = nlp(text)
res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
nlp_reloaded = English()
with make_tempdir() as d:
file_path = d / "entityruler"
ruler.to_disk(file_path)
ruler_reloaded = EntityRuler(nlp_reloaded).from_disk(file_path)
nlp_reloaded.add_pipe(ruler_reloaded)
doc_reloaded = nlp_reloaded(text)
res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
assert res == res_reloaded
def test_issue4651_without_phrase_matcher_attr():
"""Test that the EntityRuler PhraseMatcher is deserialize correctly using
the method from_disk when the EntityRuler argument phrase_matcher_attr is
not specified.
"""
text = "Spacy is a python library for nlp"
nlp = English()
ruler = EntityRuler(nlp)
patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
doc = nlp(text)
res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
nlp_reloaded = English()
with make_tempdir() as d:
file_path = d / "entityruler"
ruler.to_disk(file_path)
ruler_reloaded = EntityRuler(nlp_reloaded).from_disk(file_path)
nlp_reloaded.add_pipe(ruler_reloaded)
doc_reloaded = nlp_reloaded(text)
res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
assert res == res_reloaded

View File

@ -0,0 +1,34 @@
# coding: utf-8
from __future__ import unicode_literals
from spacy.kb import KnowledgeBase
from spacy.util import ensure_path
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
def test_issue4674():
"""Test that setting entities with overlapping identifiers does not mess up IO"""
nlp = English()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
vector1 = [0.9, 1.1, 1.01]
vector2 = [1.8, 2.25, 2.01]
kb.set_entities(entity_list=["Q1", "Q1"], freq_list=[32, 111], vector_list=[vector1, vector2])
assert kb.get_size_entities() == 1
# dumping to file & loading back in
with make_tempdir() as d:
dir_path = ensure_path(d)
if not dir_path.exists():
dir_path.mkdir()
file_path = dir_path / "kb"
kb.dump(str(file_path))
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=3)
kb2.load_bulk(str(file_path))
assert kb2.get_size_entities() == 1

View File

@ -0,0 +1,23 @@
# coding: utf8
from __future__ import unicode_literals
from spacy.util import load_model_from_path
from spacy.lang.en import English
from ..util import make_tempdir
def test_issue4707():
"""Tests that disabled component names are also excluded from nlp.from_disk
by default when loading a model.
"""
nlp = English()
nlp.add_pipe(nlp.create_pipe("sentencizer"))
nlp.add_pipe(nlp.create_pipe("entity_ruler"))
assert nlp.pipe_names == ["sentencizer", "entity_ruler"]
exclude = ["tokenizer", "sentencizer"]
with make_tempdir() as tmpdir:
nlp.to_disk(tmpdir, exclude=exclude)
new_nlp = load_model_from_path(tmpdir, disable=exclude)
assert "sentencizer" not in new_nlp.pipe_names
assert "entity_ruler" in new_nlp.pipe_names

View File

@ -24,6 +24,7 @@ def test_serialize_empty_doc(en_vocab):
def test_serialize_doc_roundtrip_bytes(en_vocab):
doc = Doc(en_vocab, words=["hello", "world"])
doc.cats = {"A": 0.5}
doc_b = doc.to_bytes()
new_doc = Doc(en_vocab).from_bytes(doc_b)
assert new_doc.to_bytes() == doc_b
@ -66,12 +67,17 @@ def test_serialize_doc_exclude(en_vocab):
def test_serialize_doc_bin():
doc_bin = DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"], store_user_data=True)
texts = ["Some text", "Lots of texts...", "..."]
cats = {"A": 0.5}
nlp = English()
for doc in nlp.pipe(texts):
doc.cats = cats
doc_bin.add(doc)
bytes_data = doc_bin.to_bytes()
# Deserialize later, e.g. in a new process
nlp = spacy.blank("en")
doc_bin = DocBin().from_bytes(bytes_data)
list(doc_bin.get_docs(nlp.vocab))
reloaded_docs = list(doc_bin.get_docs(nlp.vocab))
for i, doc in enumerate(reloaded_docs):
assert doc.text == texts[i]
assert doc.cats == cats

View File

@ -65,6 +65,20 @@ def test_language_evaluate(nlp):
nlp.evaluate([text, gold])
def test_evaluate_no_pipe(nlp):
"""Test that docs are processed correctly within Language.pipe if the
component doesn't expose a .pipe method."""
def pipe(doc):
return doc
text = "hello world"
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
nlp = Language(Vocab())
nlp.add_pipe(pipe)
nlp.evaluate([(text, annots)])
def vector_modification_pipe(doc):
doc.vector += 1
return doc

View File

@ -12,8 +12,22 @@ from .util import get_doc
test_las_apple = [
[
"Apple is looking at buying U.K. startup for $ 1 billion",
{"heads": [2, 2, 2, 2, 3, 6, 4, 4, 10, 10, 7],
"deps": ['nsubj', 'aux', 'ROOT', 'prep', 'pcomp', 'compound', 'dobj', 'prep', 'quantmod', 'compound', 'pobj']},
{
"heads": [2, 2, 2, 2, 3, 6, 4, 4, 10, 10, 7],
"deps": [
"nsubj",
"aux",
"ROOT",
"prep",
"pcomp",
"compound",
"dobj",
"prep",
"quantmod",
"compound",
"pobj",
],
},
]
]
@ -59,7 +73,7 @@ def test_las_per_type(en_vocab):
en_vocab,
words=input_.split(" "),
heads=([h - i for i, h in enumerate(annot["heads"])]),
deps=annot["deps"]
deps=annot["deps"],
)
gold = GoldParse(doc, heads=annot["heads"], deps=annot["deps"])
doc[0].dep_ = "compound"

View File

@ -0,0 +1,65 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
from spacy.util import get_lang_class
# Only include languages with no external dependencies
# "is" seems to confuse importlib, so we're also excluding it for now
# excluded: ja, ru, th, uk, vi, zh, is
LANGUAGES = [
pytest.param("fr", marks=pytest.mark.slow()),
pytest.param("af", marks=pytest.mark.slow()),
pytest.param("ar", marks=pytest.mark.slow()),
pytest.param("bg", marks=pytest.mark.slow()),
"bn",
pytest.param("ca", marks=pytest.mark.slow()),
pytest.param("cs", marks=pytest.mark.slow()),
pytest.param("da", marks=pytest.mark.slow()),
pytest.param("de", marks=pytest.mark.slow()),
"el",
"en",
pytest.param("es", marks=pytest.mark.slow()),
pytest.param("et", marks=pytest.mark.slow()),
pytest.param("fa", marks=pytest.mark.slow()),
pytest.param("fi", marks=pytest.mark.slow()),
"fr",
pytest.param("ga", marks=pytest.mark.slow()),
pytest.param("he", marks=pytest.mark.slow()),
pytest.param("hi", marks=pytest.mark.slow()),
pytest.param("hr", marks=pytest.mark.slow()),
"hu",
pytest.param("id", marks=pytest.mark.slow()),
pytest.param("it", marks=pytest.mark.slow()),
pytest.param("kn", marks=pytest.mark.slow()),
pytest.param("lb", marks=pytest.mark.slow()),
pytest.param("lt", marks=pytest.mark.slow()),
pytest.param("lv", marks=pytest.mark.slow()),
pytest.param("nb", marks=pytest.mark.slow()),
pytest.param("nl", marks=pytest.mark.slow()),
"pl",
pytest.param("pt", marks=pytest.mark.slow()),
pytest.param("ro", marks=pytest.mark.slow()),
pytest.param("si", marks=pytest.mark.slow()),
pytest.param("sk", marks=pytest.mark.slow()),
pytest.param("sl", marks=pytest.mark.slow()),
pytest.param("sq", marks=pytest.mark.slow()),
pytest.param("sr", marks=pytest.mark.slow()),
pytest.param("sv", marks=pytest.mark.slow()),
pytest.param("ta", marks=pytest.mark.slow()),
pytest.param("te", marks=pytest.mark.slow()),
pytest.param("tl", marks=pytest.mark.slow()),
pytest.param("tr", marks=pytest.mark.slow()),
pytest.param("tt", marks=pytest.mark.slow()),
pytest.param("ur", marks=pytest.mark.slow()),
]
@pytest.mark.parametrize("lang", LANGUAGES)
def test_tokenizer_explain(lang):
tokenizer = get_lang_class(lang).Defaults.create_tokenizer()
examples = pytest.importorskip("spacy.lang.{}.examples".format(lang))
for sentence in examples.sentences:
tokens = [t.text for t in tokenizer(sentence) if not t.is_space]
debug_tokens = [t[1] for t in tokenizer.explain(sentence)]
assert tokens == debug_tokens

View File

@ -57,10 +57,8 @@ URLS_SHOULD_MATCH = [
pytest.param(
"chrome-extension://mhjfbmdgcfjbbpaeojofohoefgiehjai", marks=pytest.mark.xfail()
),
pytest.param("http://foo.com/blah_blah_(wikipedia)", marks=pytest.mark.xfail()),
pytest.param(
"http://foo.com/blah_blah_(wikipedia)_(again)", marks=pytest.mark.xfail()
),
"http://foo.com/blah_blah_(wikipedia)",
"http://foo.com/blah_blah_(wikipedia)_(again)",
pytest.param("http://⌘.ws", marks=pytest.mark.xfail()),
pytest.param("http://⌘.ws/", marks=pytest.mark.xfail()),
pytest.param("http://☺.damowmow.com/", marks=pytest.mark.xfail()),
@ -107,8 +105,8 @@ URLS_SHOULD_NOT_MATCH = [
"NASDAQ:GOOG",
"http://-a.b.co",
pytest.param("foo.com", marks=pytest.mark.xfail()),
pytest.param("http://1.1.1.1.1", marks=pytest.mark.xfail()),
pytest.param("http://www.foo.bar./", marks=pytest.mark.xfail()),
"http://1.1.1.1.1",
"http://www.foo.bar./",
]

View File

@ -17,6 +17,8 @@ import re
from .tokens.doc cimport Doc
from .strings cimport hash_string
from .compat import unescape_unicode
from .attrs import intify_attrs
from .symbols import ORTH
from .errors import Errors, Warnings, deprecation_warning
from . import util
@ -107,6 +109,18 @@ cdef class Tokenizer:
if self._property_init_count <= self._property_init_max:
self._property_init_count += 1
property rules:
def __get__(self):
return self._rules
def __set__(self, rules):
self._rules = {}
self._reset_cache([key for key in self._cache])
self._reset_specials()
self._cache = PreshMap()
self._specials = PreshMap()
self._load_special_tokenization(rules)
def __reduce__(self):
args = (self.vocab,
self._rules,
@ -572,7 +586,7 @@ cdef class Tokenizer:
attrs = [intify_attrs(spec, _do_deprecated=True) for spec in substrings]
orth = "".join([spec[ORTH] for spec in attrs])
if chunk != orth:
raise ValueError(Errors.E187.format(chunk=chunk, orth=orth, token_attrs=substrings))
raise ValueError(Errors.E997.format(chunk=chunk, orth=orth, token_attrs=substrings))
def add_special_case(self, unicode string, substrings):
"""Add a special-case tokenization rule.
@ -612,6 +626,73 @@ cdef class Tokenizer:
self._flush_specials()
self._load_special_cases(self._rules)
def explain(self, text):
"""A debugging tokenizer that provides information about which
tokenizer rule or pattern was matched for each token. The tokens
produced are identical to `nlp.tokenizer()` except for whitespace
tokens.
string (unicode): The string to tokenize.
RETURNS (list): A list of (pattern_string, token_string) tuples
DOCS: https://spacy.io/api/tokenizer#explain
"""
prefix_search = self.prefix_search
suffix_search = self.suffix_search
infix_finditer = self.infix_finditer
token_match = self.token_match
special_cases = {}
for orth, special_tokens in self.rules.items():
special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings, _do_deprecated=True) for special_token in special_tokens]
tokens = []
for substring in text.split():
suffixes = []
while substring:
while prefix_search(substring) or suffix_search(substring):
if substring in special_cases:
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
break
if prefix_search(substring):
split = prefix_search(substring).end()
# break if pattern matches the empty string
if split == 0:
break
tokens.append(("PREFIX", substring[:split]))
substring = substring[split:]
if substring in special_cases:
continue
if suffix_search(substring):
split = suffix_search(substring).start()
# break if pattern matches the empty string
if split == len(substring):
break
suffixes.append(("SUFFIX", substring[split:]))
substring = substring[:split]
if substring in special_cases:
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
elif token_match(substring):
tokens.append(("TOKEN_MATCH", substring))
substring = ''
elif list(infix_finditer(substring)):
infixes = infix_finditer(substring)
offset = 0
for match in infixes:
if substring[offset : match.start()]:
tokens.append(("TOKEN", substring[offset : match.start()]))
if substring[match.start() : match.end()]:
tokens.append(("INFIX", substring[match.start() : match.end()]))
offset = match.end()
if substring[offset:]:
tokens.append(("TOKEN", substring[offset:]))
substring = ''
elif substring:
tokens.append(("TOKEN", substring))
substring = ''
tokens.extend(reversed(suffixes))
return tokens
def to_disk(self, path, **kwargs):
"""Save the current state to a directory.

View File

@ -329,7 +329,7 @@ def _split(Doc doc, int token_index, orths, heads, attrs):
doc.c[i].head += offset
# Double doc.c max_length if necessary (until big enough for all new tokens)
while doc.length + nb_subtokens - 1 >= doc.max_length:
doc._realloc(doc.length * 2)
doc._realloc(doc.max_length * 2)
# Move tokens after the split to create space for the new tokens
doc.length = len(doc) + nb_subtokens -1
to_process_tensor = (doc.tensor is not None and doc.tensor.size != 0)

View File

@ -58,6 +58,7 @@ class DocBin(object):
self.attrs.insert(0, ORTH) # Ensure ORTH is always attrs[0]
self.tokens = []
self.spaces = []
self.cats = []
self.user_data = []
self.strings = set()
self.store_user_data = store_user_data
@ -82,6 +83,7 @@ class DocBin(object):
spaces = spaces.reshape((spaces.shape[0], 1))
self.spaces.append(numpy.asarray(spaces, dtype=bool))
self.strings.update(w.text for w in doc)
self.cats.append(doc.cats)
if self.store_user_data:
self.user_data.append(srsly.msgpack_dumps(doc.user_data))
@ -102,6 +104,7 @@ class DocBin(object):
words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
doc = Doc(vocab, words=words, spaces=spaces)
doc = doc.from_array(self.attrs, tokens)
doc.cats = self.cats[i]
if self.store_user_data:
user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
doc.user_data.update(user_data)
@ -121,6 +124,7 @@ class DocBin(object):
self.tokens.extend(other.tokens)
self.spaces.extend(other.spaces)
self.strings.update(other.strings)
self.cats.extend(other.cats)
if self.store_user_data:
self.user_data.extend(other.user_data)
@ -140,6 +144,7 @@ class DocBin(object):
"spaces": numpy.vstack(self.spaces).tobytes("C"),
"lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
"strings": list(self.strings),
"cats": self.cats,
}
if self.store_user_data:
msg["user_data"] = self.user_data
@ -164,6 +169,7 @@ class DocBin(object):
flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
self.cats = msg["cats"]
if self.store_user_data and "user_data" in msg:
self.user_data = list(msg["user_data"])
for tokens in self.tokens:

View File

@ -21,6 +21,9 @@ ctypedef fused LexemeOrToken:
cdef int set_children_from_heads(TokenC* tokens, int length) except -1
cdef int _set_lr_kids_and_edges(TokenC* tokens, int length, int loop_count) except -1
cdef int token_by_start(const TokenC* tokens, int length, int start_char) except -2

View File

@ -887,6 +887,7 @@ cdef class Doc:
"array_body": lambda: self.to_array(array_head),
"sentiment": lambda: self.sentiment,
"tensor": lambda: self.tensor,
"cats": lambda: self.cats,
}
for key in kwargs:
if key in serializers or key in ("user_data", "user_data_keys", "user_data_values"):
@ -916,6 +917,7 @@ cdef class Doc:
"array_body": lambda b: None,
"sentiment": lambda b: None,
"tensor": lambda b: None,
"cats": lambda b: None,
"user_data_keys": lambda b: None,
"user_data_values": lambda b: None,
}
@ -937,6 +939,8 @@ cdef class Doc:
self.sentiment = msg["sentiment"]
if "tensor" not in exclude and "tensor" in msg:
self.tensor = msg["tensor"]
if "cats" not in exclude and "cats" in msg:
self.cats = msg["cats"]
start = 0
cdef const LexemeC* lex
cdef unicode orth_
@ -1153,10 +1157,32 @@ cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
tokens[i].r_kids = 0
tokens[i].l_edge = i
tokens[i].r_edge = i
# Three times, for non-projectivity. See issue #3170. This isn't a very
# satisfying fix, but I think it's sufficient.
for loop_count in range(3):
cdef int loop_count = 0
cdef bint heads_within_sents = False
# Try up to 10 iterations of adjusting lr_kids and lr_edges in order to
# handle non-projective dependency parses, stopping when all heads are
# within their respective sentence boundaries. We have documented cases
# that need at least 4 iterations, so this is to be on the safe side
# without risking getting stuck in an infinite loop if something is
# terribly malformed.
while not heads_within_sents:
heads_within_sents = _set_lr_kids_and_edges(tokens, length, loop_count)
if loop_count > 10:
user_warning(Warnings.W026)
loop_count += 1
# Set sentence starts
for i in range(length):
if tokens[i].head == 0 and tokens[i].dep != 0:
tokens[tokens[i].l_edge].sent_start = True
cdef int _set_lr_kids_and_edges(TokenC* tokens, int length, int loop_count) except -1:
# May be called multiple times due to non-projectivity. See issues #3170
# and #4688.
# Set left edges
cdef TokenC* head
cdef TokenC* child
cdef int i, j
for i in range(length):
child = &tokens[i]
head = &tokens[i + child.head]
@ -1176,10 +1202,22 @@ cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
head.r_edge = child.r_edge
if child.l_edge < head.l_edge:
head.l_edge = child.l_edge
# Set sentence starts
# Get sentence start positions according to current state
sent_starts = set()
for i in range(length):
if tokens[i].head == 0 and tokens[i].dep != 0:
tokens[tokens[i].l_edge].sent_start = True
sent_starts.add(tokens[i].l_edge)
cdef int curr_sent_start = 0
cdef int curr_sent_end = 0
# Check whether any heads are not within the current sentence
for i in range(length):
if (i > 0 and i in sent_starts) or i == length - 1:
curr_sent_end = i
for j in range(curr_sent_start, curr_sent_end):
if tokens[j].head + j < curr_sent_start or tokens[j].head + j >= curr_sent_end + 1:
return False
curr_sent_start = i
return True
cdef int _get_tokens_lca(Token token_j, Token token_k):

View File

@ -584,6 +584,22 @@ cdef class Span:
else:
return self.doc[root]
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None):
"""Create a `Span` object from the slice `span.text[start : end]`.
start (int): The index of the first character of the span.
end (int): The index of the first character after the span.
label (uint64 or string): A label to attach to the Span, e.g. for
named entities.
kb_id (uint64 or string): An ID from a KB to capture the meaning of a named entity.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
the span.
RETURNS (Span): The newly constructed object.
"""
start_idx += self.start_char
end_idx += self.start_char
return self.doc.char_span(start_idx, end_idx)
@property
def conjuncts(self):
"""Tokens that are conjoined to the span's root.

View File

@ -208,7 +208,7 @@ def load_model_from_path(model_path, meta=False, **overrides):
factory = factories.get(name, name)
component = nlp.create_pipe(factory, config=config)
nlp.add_pipe(component, name=name)
return nlp.from_disk(model_path)
return nlp.from_disk(model_path, exclude=disable)
def load_model_from_init_py(init_file, **overrides):
@ -301,13 +301,13 @@ def get_component_name(component):
return repr(component)
def get_cuda_stream(require=False):
def get_cuda_stream(require=False, non_blocking=True):
if CudaStream is None:
return None
elif isinstance(Model.ops, NumpyOps):
return None
else:
return CudaStream()
return CudaStream(non_blocking=non_blocking)
def get_async(stream, numpy_array):

View File

@ -265,16 +265,11 @@ cdef class Vectors:
rows = [self.key2row.get(key, -1.) for key in keys]
return xp.asarray(rows, dtype="i")
else:
targets = set()
row2key = {row: key for key, row in self.key2row.items()}
if row is not None:
targets.add(row)
return row2key[row]
else:
targets.update(rows)
results = []
for key, row in self.key2row.items():
if row in targets:
results.append(key)
targets.remove(row)
results = [row2key[row] for row in rows]
return xp.asarray(results, dtype="uint64")
def add(self, key, *, vector=None, row=None):

View File

@ -3,7 +3,6 @@
from __future__ import unicode_literals
from libc.string cimport memcpy
import numpy
import srsly
from collections import OrderedDict
from thinc.neural.util import get_array_module
@ -361,7 +360,8 @@ cdef class Vocab:
minn = len(word)
if maxn is None:
maxn = len(word)
vectors = numpy.zeros((self.vectors_length,), dtype="f")
xp = get_array_module(self.vectors.data)
vectors = xp.zeros((self.vectors_length,), dtype="f")
# Fasttext's ngram computation taken from
# https://github.com/facebookresearch/fastText
ngrams_size = 0;
@ -381,7 +381,7 @@ cdef class Vocab:
j = j + 1
if (n >= minn and not (n == 1 and (i == 0 or j == len(word)))):
if self.strings[ngram] in self.vectors.key2row:
vectors = numpy.add(self.vectors[self.strings[ngram]],vectors)
vectors = xp.add(self.vectors[self.strings[ngram]], vectors)
ngrams_size += 1
n = n + 1
if ngrams_size > 0:

Some files were not shown because too many files have changed in this diff Show More