mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
16e25ce3b5
141
spacy/_ml.py
141
spacy/_ml.py
|
@ -24,7 +24,7 @@ from thinc.linear.linear import LinearModel
|
|||
from thinc.api import uniqued, wrap, flatten_add_lengths
|
||||
|
||||
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP, CLUSTER
|
||||
from .tokens.doc import Doc
|
||||
from . import util
|
||||
|
||||
|
@ -473,30 +473,103 @@ def build_tagger_model(nr_class, token_vector_width, **cfg):
|
|||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def SpacyVectors(docs, drop=0.):
|
||||
xp = get_array_module(docs[0].vocab.vectors.data)
|
||||
width = docs[0].vocab.vectors.data.shape[1]
|
||||
batch = []
|
||||
for doc in docs:
|
||||
indices = numpy.zeros((len(doc),), dtype='i')
|
||||
for i, word in enumerate(doc):
|
||||
if word.orth in doc.vocab.vectors.key2row:
|
||||
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
||||
else:
|
||||
indices[i] = 0
|
||||
vectors = doc.vocab.vectors.data[indices]
|
||||
batch.append(vectors)
|
||||
return batch, None
|
||||
|
||||
|
||||
def foreach(layer, drop_factor=1.0):
|
||||
'''Map a layer across elements in a list'''
|
||||
def foreach_fwd(Xs, drop=0.):
|
||||
drop *= drop_factor
|
||||
ys = []
|
||||
backprops = []
|
||||
for X in Xs:
|
||||
y, bp_y = layer.begin_update(X, drop=drop)
|
||||
ys.append(y)
|
||||
backprops.append(bp_y)
|
||||
def foreach_bwd(d_ys, sgd=None):
|
||||
d_Xs = []
|
||||
for d_y, bp_y in zip(d_ys, backprops):
|
||||
if bp_y is not None and bp_y is not None:
|
||||
d_Xs.append(d_y, sgd=sgd)
|
||||
else:
|
||||
d_Xs.append(None)
|
||||
return d_Xs
|
||||
return ys, foreach_bwd
|
||||
model = wrap(foreach_fwd, layer)
|
||||
return model
|
||||
|
||||
|
||||
def build_text_classifier(nr_class, width=64, **cfg):
|
||||
nr_vector = cfg.get('nr_vector', 200)
|
||||
with Model.define_operators({'>>': chain, '+': add, '|': concatenate, '**': clone}):
|
||||
embed_lower = HashEmbed(width, nr_vector, column=1)
|
||||
embed_prefix = HashEmbed(width//2, nr_vector, column=2)
|
||||
embed_suffix = HashEmbed(width//2, nr_vector, column=3)
|
||||
embed_shape = HashEmbed(width//2, nr_vector, column=4)
|
||||
nr_vector = cfg.get('nr_vector', 5000)
|
||||
with Model.define_operators({'>>': chain, '+': add, '|': concatenate,
|
||||
'**': clone}):
|
||||
if cfg.get('low_data'):
|
||||
model = (
|
||||
SpacyVectors
|
||||
>> flatten_add_lengths
|
||||
>> with_getitem(0,
|
||||
Affine(width, 300)
|
||||
)
|
||||
>> ParametricAttention(width)
|
||||
>> Pooling(sum_pool)
|
||||
>> Residual(ReLu(width, width)) ** 2
|
||||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
>> logistic
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
lower = HashEmbed(width, nr_vector, column=1)
|
||||
prefix = HashEmbed(width//2, nr_vector, column=2)
|
||||
suffix = HashEmbed(width//2, nr_vector, column=3)
|
||||
shape = HashEmbed(width//2, nr_vector, column=4)
|
||||
|
||||
trained_vectors = (
|
||||
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID])
|
||||
>> with_flatten(
|
||||
uniqued(
|
||||
(lower | prefix | suffix | shape)
|
||||
>> LN(Maxout(width, width+(width//2)*3)),
|
||||
column=0
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
static_vectors = (
|
||||
SpacyVectors
|
||||
>> with_flatten(Affine(width, 300))
|
||||
)
|
||||
|
||||
cnn_model = (
|
||||
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE])
|
||||
>> _flatten_add_lengths
|
||||
>> with_getitem(0,
|
||||
uniqued(
|
||||
(embed_lower | embed_prefix | embed_suffix | embed_shape)
|
||||
>> Maxout(width, width+(width//2)*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
|
||||
# TODO Make concatenate support lists
|
||||
concatenate_lists(trained_vectors, static_vectors)
|
||||
>> with_flatten(
|
||||
LN(Maxout(width, width*2))
|
||||
>> Residual(
|
||||
(ExtractWindow(nW=1) >> zero_init(Maxout(width, width*3)))
|
||||
) ** 2, pad=2
|
||||
)
|
||||
>> ParametricAttention(width,)
|
||||
>> flatten_add_lengths
|
||||
>> ParametricAttention(width)
|
||||
>> Pooling(sum_pool)
|
||||
>> ReLu(width, width)
|
||||
>> Residual(zero_init(Maxout(width, width)))
|
||||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
linear_model = (
|
||||
_preprocess_doc
|
||||
>> LinearModel(nr_class, drop_factor=0.)
|
||||
|
@ -511,3 +584,35 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
model.lsuv = False
|
||||
return model
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths, pad=0)
|
||||
X = ops.flatten(seqs, pad=0)
|
||||
return X, finish_update
|
||||
|
||||
|
||||
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
||||
'''Compose two or more models `f`, `g`, etc, such that their outputs are
|
||||
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
||||
'''
|
||||
if not layers:
|
||||
return noop()
|
||||
drop_factor = kwargs.get('drop_factor', 1.0)
|
||||
ops = layers[0].ops
|
||||
layers = [chain(layer, flatten) for layer in layers]
|
||||
concat = concatenate(*layers)
|
||||
def concatenate_lists_fwd(Xs, drop=0.):
|
||||
drop *= drop_factor
|
||||
lengths = ops.asarray([len(X) for X in Xs], dtype='i')
|
||||
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
||||
ys = ops.unflatten(flat_y, lengths)
|
||||
def concatenate_lists_bwd(d_ys, sgd=None):
|
||||
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
||||
return ys, concatenate_lists_bwd
|
||||
model = wrap(concatenate_lists_fwd, concat)
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py
|
||||
|
||||
__title__ = 'spacy-nightly'
|
||||
__version__ = '2.0.0a11'
|
||||
__version__ = '2.0.0a12'
|
||||
__summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython'
|
||||
__uri__ = 'https://spacy.io'
|
||||
__author__ = 'Explosion AI'
|
||||
|
|
|
@ -46,6 +46,43 @@ from ._ml import build_text_classifier, build_tagger_model
|
|||
from .parts_of_speech import X
|
||||
|
||||
|
||||
class SentenceSegmenter(object):
|
||||
'''A simple spaCy hook, to allow custom sentence boundary detection logic
|
||||
(that doesn't require the dependency parse).
|
||||
|
||||
To change the sentence boundary detection strategy, pass a generator
|
||||
function `strategy` on initialization, or assign a new strategy to
|
||||
the .strategy attribute.
|
||||
|
||||
Sentence detection strategies should be generators that take `Doc` objects
|
||||
and yield `Span` objects for each sentence.
|
||||
'''
|
||||
name = 'sbd'
|
||||
|
||||
def __init__(self, vocab, strategy=None):
|
||||
self.vocab = vocab
|
||||
if strategy is None or strategy == 'on_punct':
|
||||
strategy = self.split_on_punct
|
||||
self.strategy = strategy
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.user_hooks['sents'] = self.strategy
|
||||
|
||||
@staticmethod
|
||||
def split_on_punct(doc):
|
||||
start = 0
|
||||
seen_period = False
|
||||
for i, word in enumerate(doc):
|
||||
if seen_period and not word.is_punct:
|
||||
yield doc[start : word.i]
|
||||
start = word.i
|
||||
seen_period = False
|
||||
elif word.text in ['.', '!', '?']:
|
||||
seen_period = True
|
||||
if start < len(doc):
|
||||
yield doc[start : len(doc)]
|
||||
|
||||
|
||||
class BaseThincComponent(object):
|
||||
name = None
|
||||
|
||||
|
@ -91,15 +128,20 @@ class BaseThincComponent(object):
|
|||
|
||||
def to_bytes(self, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('cfg', lambda: json_dumps(self.cfg)),
|
||||
('model', lambda: self.model.to_bytes()),
|
||||
('vocab', lambda: self.vocab.to_bytes())
|
||||
))
|
||||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
def load_model(b):
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.model.from_bytes(b)
|
||||
|
||||
deserialize = OrderedDict((
|
||||
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
|
||||
('model', lambda b: self.model.from_bytes(b)),
|
||||
('vocab', lambda b: self.vocab.from_bytes(b))
|
||||
))
|
||||
|
@ -108,19 +150,22 @@ class BaseThincComponent(object):
|
|||
|
||||
def to_disk(self, path, **exclude):
|
||||
serialize = OrderedDict((
|
||||
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))),
|
||||
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
||||
('vocab', lambda p: self.vocab.to_disk(p)),
|
||||
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg)))
|
||||
('vocab', lambda p: self.vocab.to_disk(p))
|
||||
))
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
def load_model(p):
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.model.from_bytes(p.open('rb').read())
|
||||
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda p: self.model.from_bytes(p.open('rb').read())),
|
||||
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
|
||||
('model', load_model),
|
||||
('vocab', lambda p: self.vocab.from_disk(p)),
|
||||
('cfg', lambda p: self.cfg.update(_load_cfg(p)))
|
||||
))
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
|
@ -601,12 +646,13 @@ class TextCategorizer(BaseThincComponent):
|
|||
return mean_square_error, d_scores
|
||||
|
||||
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
||||
if pipeline:
|
||||
if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer':
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
else:
|
||||
token_vector_width = 64
|
||||
if self.model is True:
|
||||
self.model = self.Model(len(self.labels), token_vector_width)
|
||||
self.model = self.Model(len(self.labels), token_vector_width,
|
||||
**self.cfg)
|
||||
|
||||
|
||||
cdef class EntityRecognizer(LinearParser):
|
||||
|
|
|
@ -90,6 +90,33 @@ cdef class Vectors:
|
|||
def most_similar(self, key):
|
||||
raise NotImplementedError
|
||||
|
||||
def from_glove(self, path):
|
||||
'''Load GloVe vectors from a directory. Assumes binary format,
|
||||
that the vocab is in a vocab.txt, and that vectors are named
|
||||
vectors.{size}.[fd].bin, e.g. vectors.128.f.bin for 128d float32
|
||||
vectors, vectors.300.d.bin for 300d float64 (double) vectors, etc.
|
||||
By default GloVe outputs 64-bit vectors.'''
|
||||
path = util.ensure_path(path)
|
||||
for name in path.iterdir():
|
||||
if name.parts[-1].startswith('vectors'):
|
||||
_, dims, dtype, _2 = name.parts[-1].split('.')
|
||||
self.width = int(dims)
|
||||
break
|
||||
else:
|
||||
raise IOError("Expected file named e.g. vectors.128.f.bin")
|
||||
bin_loc = path / 'vectors.{dims}.{dtype}.bin'.format(dims=dims,
|
||||
dtype=dtype)
|
||||
with bin_loc.open('rb') as file_:
|
||||
self.data = numpy.fromfile(file_, dtype='float64')
|
||||
self.data = numpy.ascontiguousarray(self.data, dtype='float32')
|
||||
n = 0
|
||||
with (path / 'vocab.txt').open('r') as file_:
|
||||
for line in file_:
|
||||
self.add(line.strip())
|
||||
n += 1
|
||||
if (self.data.size % self.width) == 0:
|
||||
self.data
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
serializers = OrderedDict((
|
||||
('vectors', lambda p: numpy.save(p.open('wb'), self.data, allow_pickle=False)),
|
||||
|
|
Loading…
Reference in New Issue
Block a user