mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-03 13:14:11 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
1729165e90
|
@ -26,7 +26,7 @@ def conllu2json(
|
|||
Extract NER tags if available and convert them so that they follow
|
||||
BILUO and the Wikipedia scheme
|
||||
"""
|
||||
MISC_NER_PATTERN = "\|?(?:name=)?(([A-Z_]+)-([A-Z_]+)|O)\|?"
|
||||
MISC_NER_PATTERN = "^((?:name|NE)=)?([BILU])-([A-Z_]+)|O$"
|
||||
msg = Printer(no_print=no_print)
|
||||
n_sents_info(msg, n_sents)
|
||||
docs = []
|
||||
|
@ -39,7 +39,7 @@ def conllu2json(
|
|||
ner_map=ner_map,
|
||||
merge_subtokens=merge_subtokens,
|
||||
)
|
||||
has_ner_tags = has_ner(input_data, ner_tag_pattern=MISC_NER_PATTERN)
|
||||
has_ner_tags = has_ner(input_data, MISC_NER_PATTERN)
|
||||
for i, example in enumerate(conll_data):
|
||||
raw += example.text
|
||||
sentences.append(
|
||||
|
@ -65,20 +65,19 @@ def conllu2json(
|
|||
|
||||
def has_ner(input_data, ner_tag_pattern):
|
||||
"""
|
||||
Check the 10th column of the first token to determine if the file contains
|
||||
NER tags
|
||||
Check the MISC column for NER tags.
|
||||
"""
|
||||
for sent in input_data.strip().split("\n\n"):
|
||||
lines = sent.strip().split("\n")
|
||||
if lines:
|
||||
while lines[0].startswith("#"):
|
||||
lines.pop(0)
|
||||
if lines:
|
||||
parts = lines[0].split("\t")
|
||||
for line in lines:
|
||||
parts = line.split("\t")
|
||||
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
|
||||
if re.search(ner_tag_pattern, misc):
|
||||
for misc_part in misc.split("|"):
|
||||
if re.match(ner_tag_pattern, misc_part):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
|
@ -127,8 +126,9 @@ def get_entities(lines, tag_pattern, ner_map=None):
|
|||
|
||||
iob = []
|
||||
for misc in miscs:
|
||||
tag_match = re.search(tag_pattern, misc)
|
||||
iob_tag = "O"
|
||||
for misc_part in misc.split("|"):
|
||||
tag_match = re.match(tag_pattern, misc_part)
|
||||
if tag_match:
|
||||
prefix = tag_match.group(2)
|
||||
suffix = tag_match.group(3)
|
||||
|
@ -140,6 +140,7 @@ def get_entities(lines, tag_pattern, ner_map=None):
|
|||
iob_tag = "O"
|
||||
else:
|
||||
iob_tag = prefix + "-" + suffix
|
||||
break
|
||||
iob.append(iob_tag)
|
||||
return iob_to_biluo(iob)
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ cdef class TokenAnnotation:
|
|||
cdef public list deps
|
||||
cdef public list entities
|
||||
cdef public list sent_starts
|
||||
cdef public list brackets
|
||||
cdef public dict brackets_by_start
|
||||
|
||||
|
||||
cdef class DocAnnotation:
|
||||
|
|
|
@ -658,7 +658,18 @@ cdef class TokenAnnotation:
|
|||
self.deps = deps if deps else []
|
||||
self.entities = entities if entities else []
|
||||
self.sent_starts = sent_starts if sent_starts else []
|
||||
self.brackets = brackets if brackets else []
|
||||
self.brackets_by_start = {}
|
||||
if brackets:
|
||||
for b_start, b_end, b_label in brackets:
|
||||
self.brackets_by_start.setdefault(b_start, []).append((b_end, b_label))
|
||||
|
||||
@property
|
||||
def brackets(self):
|
||||
brackets = []
|
||||
for start, ends_labels in self.brackets_by_start.items():
|
||||
for end, label in ends_labels:
|
||||
brackets.append((start, end, label))
|
||||
return brackets
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, token_dict):
|
||||
|
@ -811,8 +822,10 @@ cdef class Example:
|
|||
s_lemmas, s_heads, s_deps, s_ents, s_sent_starts = [], [], [], [], []
|
||||
s_brackets = []
|
||||
sent_start_i = 0
|
||||
t = self.token_annotation
|
||||
cdef TokenAnnotation t = self.token_annotation
|
||||
split_examples = []
|
||||
cdef int b_start, b_end
|
||||
cdef unicode b_label
|
||||
for i in range(len(t.words)):
|
||||
if i > 0 and t.sent_starts[i] == 1:
|
||||
s_example.set_token_annotation(ids=s_ids,
|
||||
|
@ -836,9 +849,10 @@ cdef class Example:
|
|||
s_deps.append(t.get_dep(i))
|
||||
s_ents.append(t.get_entity(i))
|
||||
s_sent_starts.append(t.get_sent_start(i))
|
||||
s_brackets.extend((b[0] - sent_start_i,
|
||||
b[1] - sent_start_i, b[2])
|
||||
for b in t.brackets if b[0] == i)
|
||||
for b_end, b_label in t.brackets_by_start.get(i, []):
|
||||
s_brackets.append(
|
||||
(i - sent_start_i, b_end - sent_start_i, b_label)
|
||||
)
|
||||
i += 1
|
||||
s_example.set_token_annotation(ids=s_ids, words=s_words, tags=s_tags,
|
||||
pos=s_pos, morphs=s_morphs, lemmas=s_lemmas, heads=s_heads,
|
||||
|
@ -904,8 +918,10 @@ cdef class Example:
|
|||
examples = [examples]
|
||||
converted_examples = []
|
||||
for ex in examples:
|
||||
if isinstance(ex, Example):
|
||||
converted_examples.append(ex)
|
||||
# convert string to Doc to Example
|
||||
if isinstance(ex, str):
|
||||
elif isinstance(ex, str):
|
||||
if keep_raw_text:
|
||||
converted_examples.append(Example(doc=ex))
|
||||
else:
|
||||
|
|
|
@ -29,14 +29,26 @@ def test_cli_converters_conllu2json():
|
|||
assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O"]
|
||||
|
||||
|
||||
def test_cli_converters_conllu2json_name_ner_map():
|
||||
lines = [
|
||||
@pytest.mark.parametrize(
|
||||
"lines",
|
||||
[
|
||||
(
|
||||
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O",
|
||||
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|name=B-PER",
|
||||
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tname=I-PER",
|
||||
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O",
|
||||
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=B-BAD",
|
||||
]
|
||||
),
|
||||
(
|
||||
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\t_",
|
||||
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|NE=B-PER",
|
||||
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tNE=L-PER",
|
||||
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No",
|
||||
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tNE=B-BAD",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_cli_converters_conllu2json_name_ner_map(lines):
|
||||
input_data = "\n".join(lines)
|
||||
converted = conllu2json(input_data, n_sents=1, ner_map={"PER": "PERSON", "BAD": ""})
|
||||
assert len(converted) == 1
|
||||
|
|
Loading…
Reference in New Issue
Block a user