mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Merge pull request #11669 from rmitsch/feature/candidate-generation-by-docs
Prototype: Entity linking with custom KBs
This commit is contained in:
		
						commit
						178f259dbd
					
				
							
								
								
									
										1
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										1
									
								
								setup.py
									
									
									
									
									
								
							| 
						 | 
					@ -30,7 +30,6 @@ MOD_NAMES = [
 | 
				
			||||||
    "spacy.lexeme",
 | 
					    "spacy.lexeme",
 | 
				
			||||||
    "spacy.vocab",
 | 
					    "spacy.vocab",
 | 
				
			||||||
    "spacy.attrs",
 | 
					    "spacy.attrs",
 | 
				
			||||||
    "spacy.kb.candidate",
 | 
					 | 
				
			||||||
    "spacy.kb.kb",
 | 
					    "spacy.kb.kb",
 | 
				
			||||||
    "spacy.kb.kb_in_memory",
 | 
					    "spacy.kb.kb_in_memory",
 | 
				
			||||||
    "spacy.ml.parser_model",
 | 
					    "spacy.ml.parser_model",
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -957,11 +957,10 @@ class Errors(metaclass=ErrorsWithCodes):
 | 
				
			||||||
             "case pass an empty list for the previously not specified argument to avoid this error.")
 | 
					             "case pass an empty list for the previously not specified argument to avoid this error.")
 | 
				
			||||||
    E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got "
 | 
					    E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got "
 | 
				
			||||||
             "{value}.")
 | 
					             "{value}.")
 | 
				
			||||||
    E1044 = ("Expected `candidates_batch_size` to be >= 1, but got: {value}")
 | 
					    E1044 = ("Encountered {parent} subclass without `{parent}.{method}` "
 | 
				
			||||||
    E1045 = ("Encountered {parent} subclass without `{parent}.{method}` "
 | 
					 | 
				
			||||||
             "method in '{name}'. If you want to use this method, make "
 | 
					             "method in '{name}'. If you want to use this method, make "
 | 
				
			||||||
             "sure it's overwritten on the subclass.")
 | 
					             "sure it's overwritten on the subclass.")
 | 
				
			||||||
    E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
 | 
					    E1045 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
 | 
				
			||||||
             "knowledge base, use `InMemoryLookupKB`.")
 | 
					             "knowledge base, use `InMemoryLookupKB`.")
 | 
				
			||||||
    E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
 | 
					    E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
 | 
				
			||||||
    E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
 | 
					    E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,3 +1,5 @@
 | 
				
			||||||
from .kb import KnowledgeBase
 | 
					from .kb import KnowledgeBase
 | 
				
			||||||
from .kb_in_memory import InMemoryLookupKB
 | 
					from .kb_in_memory import InMemoryLookupKB
 | 
				
			||||||
from .candidate import Candidate, get_candidates, get_candidates_batch
 | 
					from .candidate import Candidate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					__all__ = ["KnowledgeBase", "InMemoryLookupKB", "Candidate"]
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,12 +0,0 @@
 | 
				
			||||||
from .kb cimport KnowledgeBase
 | 
					 | 
				
			||||||
from libcpp.vector cimport vector
 | 
					 | 
				
			||||||
from ..typedefs cimport hash_t
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
 | 
					 | 
				
			||||||
cdef class Candidate:
 | 
					 | 
				
			||||||
    cdef readonly KnowledgeBase kb
 | 
					 | 
				
			||||||
    cdef hash_t entity_hash
 | 
					 | 
				
			||||||
    cdef float entity_freq
 | 
					 | 
				
			||||||
    cdef vector[float] entity_vector
 | 
					 | 
				
			||||||
    cdef hash_t alias_hash
 | 
					 | 
				
			||||||
    cdef float prior_prob
 | 
					 | 
				
			||||||
							
								
								
									
										109
									
								
								spacy/kb/candidate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										109
									
								
								spacy/kb/candidate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,109 @@
 | 
				
			||||||
 | 
					import abc
 | 
				
			||||||
 | 
					from typing import List, Union, Callable
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class BaseCandidate(abc.ABC):
 | 
				
			||||||
 | 
					    """A `BaseCandidate` object refers to a textual mention (`alias`) that may or may not be resolved
 | 
				
			||||||
 | 
					    to a specific `entity_id` from a Knowledge Base. This will be used as input for the entity_id linking
 | 
				
			||||||
 | 
					    algorithm which will disambiguate the various candidates to the correct one.
 | 
				
			||||||
 | 
					    Each candidate (alias, entity_id) pair is assigned a certain prior probability.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DOCS: https://spacy.io/api/kb/#candidate-init
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(
 | 
				
			||||||
 | 
					        self, mention: str, entity_id: Union[int, str], entity_vector: List[float]
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					        """Create new instance of `Candidate`. Note: has to be a sub-class, otherwise error will be raised.
 | 
				
			||||||
 | 
					        mention (str): Mention text for this candidate.
 | 
				
			||||||
 | 
					        entity_id (Union[int, str]): Unique entity ID.
 | 
				
			||||||
 | 
					        entity_vector (List[float]): Entity embedding.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        self._mention = mention
 | 
				
			||||||
 | 
					        self._entity_id = entity_id
 | 
				
			||||||
 | 
					        self._entity_vector = entity_vector
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def entity(self) -> Union[int, str]:
 | 
				
			||||||
 | 
					        """RETURNS (Union[int, str]): Entity ID."""
 | 
				
			||||||
 | 
					        return self._entity_id
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    @abc.abstractmethod
 | 
				
			||||||
 | 
					    def entity_(self) -> str:
 | 
				
			||||||
 | 
					        """RETURNS (str): Entity name."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def mention(self) -> str:
 | 
				
			||||||
 | 
					        """RETURNS (str): Mention."""
 | 
				
			||||||
 | 
					        return self._mention
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def entity_vector(self) -> List[float]:
 | 
				
			||||||
 | 
					        """RETURNS (List[float]): Entity vector."""
 | 
				
			||||||
 | 
					        return self._entity_vector
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Candidate(BaseCandidate):
 | 
				
			||||||
 | 
					    """`Candidate` for InMemoryLookupKBCandidate."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        retrieve_string_from_hash: Callable[[int], str],
 | 
				
			||||||
 | 
					        entity_hash: int,
 | 
				
			||||||
 | 
					        entity_freq: int,
 | 
				
			||||||
 | 
					        entity_vector: List[float],
 | 
				
			||||||
 | 
					        alias_hash: int,
 | 
				
			||||||
 | 
					        prior_prob: float,
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        retrieve_string_from_hash (Callable[[int], str]): Callable retrieveing entity name from provided entity/vocab
 | 
				
			||||||
 | 
					            hash.
 | 
				
			||||||
 | 
					        entity_hash (str): Hashed entity name /ID.
 | 
				
			||||||
 | 
					        entity_freq (int): Entity frequency in KB corpus.
 | 
				
			||||||
 | 
					        entity_vector (List[float]): Entity embedding.
 | 
				
			||||||
 | 
					        alias_hash (int): Hashed alias.
 | 
				
			||||||
 | 
					        prior_prob (float): Prior probability of entity for this mention - i.e. the probability that, independent of
 | 
				
			||||||
 | 
					            the context, this mention resolves to this entity_id in the corpus used to build the knowledge base. In
 | 
				
			||||||
 | 
					            cases in which this isn't always possible (e.g.: the corpus to analyse contains mentions that the KB corpus
 | 
				
			||||||
 | 
					            doesn't) it might be better to eschew this information and always supply the same value.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        super().__init__(
 | 
				
			||||||
 | 
					            mention=retrieve_string_from_hash(alias_hash),
 | 
				
			||||||
 | 
					            entity_id=entity_hash,
 | 
				
			||||||
 | 
					            entity_vector=entity_vector,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self._retrieve_string_from_hash = retrieve_string_from_hash
 | 
				
			||||||
 | 
					        self._entity_hash = entity_hash
 | 
				
			||||||
 | 
					        self._entity_freq = entity_freq
 | 
				
			||||||
 | 
					        self._alias_hash = alias_hash
 | 
				
			||||||
 | 
					        self._prior_prob = prior_prob
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def entity(self) -> int:
 | 
				
			||||||
 | 
					        """RETURNS (int): hash of the entity_id's KB ID/name"""
 | 
				
			||||||
 | 
					        return self._entity_hash
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def entity_(self) -> str:
 | 
				
			||||||
 | 
					        """RETURNS (str): ID/name of this entity_id in the KB"""
 | 
				
			||||||
 | 
					        return self._retrieve_string_from_hash(self._entity_hash)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def alias(self) -> int:
 | 
				
			||||||
 | 
					        """RETURNS (int): hash of the alias"""
 | 
				
			||||||
 | 
					        return self._alias_hash
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def alias_(self) -> str:
 | 
				
			||||||
 | 
					        """RETURNS (str): ID of the original alias"""
 | 
				
			||||||
 | 
					        return self._retrieve_string_from_hash(self._alias_hash)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def entity_freq(self) -> float:
 | 
				
			||||||
 | 
					        return self._entity_freq
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def prior_prob(self) -> float:
 | 
				
			||||||
 | 
					        """RETURNS (List[float]): Entity vector."""
 | 
				
			||||||
 | 
					        return self._prior_prob
 | 
				
			||||||
| 
						 | 
					@ -1,74 +0,0 @@
 | 
				
			||||||
# cython: infer_types=True, profile=True
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
from typing import Iterable
 | 
					 | 
				
			||||||
from .kb cimport KnowledgeBase
 | 
					 | 
				
			||||||
from ..tokens import Span
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
cdef class Candidate:
 | 
					 | 
				
			||||||
    """A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
 | 
					 | 
				
			||||||
    to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
 | 
					 | 
				
			||||||
    algorithm which will disambiguate the various candidates to the correct one.
 | 
					 | 
				
			||||||
    Each candidate (alias, entity) pair is assigned a certain prior probability.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    DOCS: https://spacy.io/api/kb/#candidate-init
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
 | 
					 | 
				
			||||||
        self.kb = kb
 | 
					 | 
				
			||||||
        self.entity_hash = entity_hash
 | 
					 | 
				
			||||||
        self.entity_freq = entity_freq
 | 
					 | 
				
			||||||
        self.entity_vector = entity_vector
 | 
					 | 
				
			||||||
        self.alias_hash = alias_hash
 | 
					 | 
				
			||||||
        self.prior_prob = prior_prob
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def entity(self) -> int:
 | 
					 | 
				
			||||||
        """RETURNS (uint64): hash of the entity's KB ID/name"""
 | 
					 | 
				
			||||||
        return self.entity_hash
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def entity_(self) -> str:
 | 
					 | 
				
			||||||
        """RETURNS (str): ID/name of this entity in the KB"""
 | 
					 | 
				
			||||||
        return self.kb.vocab.strings[self.entity_hash]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def alias(self) -> int:
 | 
					 | 
				
			||||||
        """RETURNS (uint64): hash of the alias"""
 | 
					 | 
				
			||||||
        return self.alias_hash
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def alias_(self) -> str:
 | 
					 | 
				
			||||||
        """RETURNS (str): ID of the original alias"""
 | 
					 | 
				
			||||||
        return self.kb.vocab.strings[self.alias_hash]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def entity_freq(self) -> float:
 | 
					 | 
				
			||||||
        return self.entity_freq
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def entity_vector(self) -> Iterable[float]:
 | 
					 | 
				
			||||||
        return self.entity_vector
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    @property
 | 
					 | 
				
			||||||
    def prior_prob(self) -> float:
 | 
					 | 
				
			||||||
        return self.prior_prob
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
    Return candidate entities for a given mention and fetching appropriate entries from the index.
 | 
					 | 
				
			||||||
    kb (KnowledgeBase): Knowledge base to query.
 | 
					 | 
				
			||||||
    mention (Span): Entity mention for which to identify candidates.
 | 
					 | 
				
			||||||
    RETURNS (Iterable[Candidate]): Identified candidates.
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
    return kb.get_candidates(mention)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
    Return candidate entities for the given mentions and fetching appropriate entries from the index.
 | 
					 | 
				
			||||||
    kb (KnowledgeBase): Knowledge base to query.
 | 
					 | 
				
			||||||
    mention (Iterable[Span]): Entity mentions for which to identify candidates.
 | 
					 | 
				
			||||||
    RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
    return kb.get_candidates_batch(mentions)
 | 
					 | 
				
			||||||
| 
						 | 
					@ -7,4 +7,4 @@ from ..vocab cimport Vocab
 | 
				
			||||||
cdef class KnowledgeBase:
 | 
					cdef class KnowledgeBase:
 | 
				
			||||||
    cdef Pool mem
 | 
					    cdef Pool mem
 | 
				
			||||||
    cdef readonly Vocab vocab
 | 
					    cdef readonly Vocab vocab
 | 
				
			||||||
    cdef readonly int64_t entity_vector_length
 | 
					    cdef public int64_t entity_vector_length
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,11 +1,11 @@
 | 
				
			||||||
# cython: infer_types=True, profile=True
 | 
					# cython: infer_types=True, profile=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from pathlib import Path
 | 
					from pathlib import Path
 | 
				
			||||||
from typing import Iterable, Tuple, Union
 | 
					from typing import Iterable, Tuple, Union, Iterator, TypeVar, Type, Callable
 | 
				
			||||||
from cymem.cymem cimport Pool
 | 
					from cymem.cymem cimport Pool
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .candidate import Candidate
 | 
					from .candidate import Candidate
 | 
				
			||||||
from ..tokens import Span
 | 
					from ..tokens import Span, SpanGroup, Doc
 | 
				
			||||||
from ..util import SimpleFrozenList
 | 
					from ..util import SimpleFrozenList
 | 
				
			||||||
from ..errors import Errors
 | 
					from ..errors import Errors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -18,38 +18,52 @@ cdef class KnowledgeBase:
 | 
				
			||||||
    DOCS: https://spacy.io/api/kb
 | 
					    DOCS: https://spacy.io/api/kb
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    _KBType = TypeVar("_KBType", bound=KnowledgeBase)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __init__(self, vocab: Vocab, entity_vector_length: int):
 | 
					    def __init__(self, vocab: Vocab, entity_vector_length: int):
 | 
				
			||||||
        """Create a KnowledgeBase."""
 | 
					        """Create a KnowledgeBase."""
 | 
				
			||||||
        # Make sure abstract KB is not instantiated.
 | 
					        # Make sure abstract KB is not instantiated.
 | 
				
			||||||
        if self.__class__ == KnowledgeBase:
 | 
					        if self.__class__ == KnowledgeBase:
 | 
				
			||||||
            raise TypeError(
 | 
					            raise TypeError(
 | 
				
			||||||
                Errors.E1046.format(cls_name=self.__class__.__name__)
 | 
					                Errors.E1045.format(cls_name=self.__class__.__name__)
 | 
				
			||||||
            )
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.vocab = vocab
 | 
					        self.vocab = vocab
 | 
				
			||||||
        self.entity_vector_length = entity_vector_length
 | 
					        self.entity_vector_length = entity_vector_length
 | 
				
			||||||
        self.mem = Pool()
 | 
					        self.mem = Pool()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_candidates_batch(self, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
 | 
					    def get_candidates_all(self, mentions: Iterator[SpanGroup]) -> Iterator[Iterable[Iterable[Candidate]]]:
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        Return candidate entities for specified texts. Each candidate defines the entity, the original alias,
 | 
					        Return candidate entities for mentions stored in `ent` attribute in passed docs. Each candidate defines the
 | 
				
			||||||
        and the prior probability of that alias resolving to that entity.
 | 
					        entity, the original alias, and the prior probability of that alias resolving to that entity.
 | 
				
			||||||
        If no candidate is found for a given text, an empty list is returned.
 | 
					        If no candidate is found for a given mention, an empty list is returned.
 | 
				
			||||||
        mentions (Iterable[Span]): Mentions for which to get candidates.
 | 
					        mentions (Iterator[SpanGroup]): Mentions per doc as SpanGroup instance.
 | 
				
			||||||
        RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
 | 
					        RETURNS (Iterator[Iterable[Iterable[Candidate]]]): Identified candidates per document.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        for doc_mentions in mentions:
 | 
				
			||||||
 | 
					            yield [self.get_candidates(ent_span) for ent_span in doc_mentions]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @staticmethod
 | 
				
			||||||
 | 
					    def get_ents_as_spangroup(doc: Doc, extractor: Union[str, Callable[[Iterable[Span]], Doc]] = "ent") -> SpanGroup:
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Fetch entities from doc and returns them as a SpanGroup ready to be used in
 | 
				
			||||||
 | 
					        `KnowledgeBase.get_candidates_all()`.
 | 
				
			||||||
 | 
					        doc (Doc): Doc whose entities should be fetched.
 | 
				
			||||||
 | 
					        extractor (Union[str, Callable[[Iterable[Span]], Doc]]): Defines how to retrieve object holding spans
 | 
				
			||||||
 | 
					            used to describe entities. This can be a key referring to a property of the doc instance (e.g. "
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        return [self.get_candidates(span) for span in mentions]
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_candidates(self, mention: Span) -> Iterable[Candidate]:
 | 
					    def get_candidates(self, mention: Span) -> Iterable[Candidate]:
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        Return candidate entities for specified text. Each candidate defines the entity, the original alias,
 | 
					        Return candidate entities for specified text. Each candidate defines the entity, the original alias,
 | 
				
			||||||
        and the prior probability of that alias resolving to that entity.
 | 
					        and the prior probability of that alias resolving to that entity.
 | 
				
			||||||
        If the no candidate is found for a given text, an empty list is returned.
 | 
					        If the no candidate is found for a given text, an empty list is returned.
 | 
				
			||||||
 | 
					        Note that doc is not utilized for further context in this implementation.
 | 
				
			||||||
        mention (Span): Mention for which to get candidates.
 | 
					        mention (Span): Mention for which to get candidates.
 | 
				
			||||||
        RETURNS (Iterable[Candidate]): Identified candidates.
 | 
					        RETURNS (Iterable[Candidate]): Identified candidates.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        raise NotImplementedError(
 | 
					        raise NotImplementedError(
 | 
				
			||||||
            Errors.E1045.format(parent="KnowledgeBase", method="get_candidates", name=self.__name__)
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="get_candidates", name=self.__name__)
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_vectors(self, entities: Iterable[str]) -> Iterable[Iterable[float]]:
 | 
					    def get_vectors(self, entities: Iterable[str]) -> Iterable[Iterable[float]]:
 | 
				
			||||||
| 
						 | 
					@ -67,7 +81,7 @@ cdef class KnowledgeBase:
 | 
				
			||||||
        RETURNS (Iterable[float]): Vector for specified entity.
 | 
					        RETURNS (Iterable[float]): Vector for specified entity.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        raise NotImplementedError(
 | 
					        raise NotImplementedError(
 | 
				
			||||||
            Errors.E1045.format(parent="KnowledgeBase", method="get_vector", name=self.__name__)
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="get_vector", name=self.__name__)
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def to_bytes(self, **kwargs) -> bytes:
 | 
					    def to_bytes(self, **kwargs) -> bytes:
 | 
				
			||||||
| 
						 | 
					@ -75,7 +89,7 @@ cdef class KnowledgeBase:
 | 
				
			||||||
        RETURNS (bytes): Current state as binary string.
 | 
					        RETURNS (bytes): Current state as binary string.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        raise NotImplementedError(
 | 
					        raise NotImplementedError(
 | 
				
			||||||
            Errors.E1045.format(parent="KnowledgeBase", method="to_bytes", name=self.__name__)
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="to_bytes", name=self.__name__)
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def from_bytes(self, bytes_data: bytes, *, exclude: Tuple[str] = tuple()):
 | 
					    def from_bytes(self, bytes_data: bytes, *, exclude: Tuple[str] = tuple()):
 | 
				
			||||||
| 
						 | 
					@ -84,25 +98,45 @@ cdef class KnowledgeBase:
 | 
				
			||||||
        exclude (Tuple[str]): Properties to exclude when restoring KB.
 | 
					        exclude (Tuple[str]): Properties to exclude when restoring KB.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        raise NotImplementedError(
 | 
					        raise NotImplementedError(
 | 
				
			||||||
            Errors.E1045.format(parent="KnowledgeBase", method="from_bytes", name=self.__name__)
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="from_bytes", name=self.__name__)
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
 | 
					    def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
 | 
				
			||||||
        """
 | 
					        """Write KnowledgeBase content to disk.
 | 
				
			||||||
        Write KnowledgeBase content to disk.
 | 
					 | 
				
			||||||
        path (Union[str, Path]): Target file path.
 | 
					        path (Union[str, Path]): Target file path.
 | 
				
			||||||
        exclude (Iterable[str]): List of components to exclude.
 | 
					        exclude (Iterable[str]): List of components to exclude.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        raise NotImplementedError(
 | 
					        raise NotImplementedError(
 | 
				
			||||||
            Errors.E1045.format(parent="KnowledgeBase", method="to_disk", name=self.__name__)
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="to_disk", name=self.__name__)
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def from_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
 | 
					    def from_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
 | 
				
			||||||
        """
 | 
					        """Load KnowledgeBase content from disk.
 | 
				
			||||||
        Load KnowledgeBase content from disk.
 | 
					 | 
				
			||||||
        path (Union[str, Path]): Target file path.
 | 
					        path (Union[str, Path]): Target file path.
 | 
				
			||||||
        exclude (Iterable[str]): List of components to exclude.
 | 
					        exclude (Iterable[str]): List of components to exclude.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        raise NotImplementedError(
 | 
					        raise NotImplementedError(
 | 
				
			||||||
            Errors.E1045.format(parent="KnowledgeBase", method="from_disk", name=self.__name__)
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="from_disk", name=self.__name__)
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @classmethod
 | 
				
			||||||
 | 
					    def generate_from_disk(
 | 
				
			||||||
 | 
					        cls: Type[_KBType], path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()
 | 
				
			||||||
 | 
					    ) -> _KBType:
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Factory method for generating KnowledgeBase subclass instance from file.
 | 
				
			||||||
 | 
					        path (Union[str, Path]): Target file path.
 | 
				
			||||||
 | 
					        exclude (Iterable[str]): List of components to exclude.
 | 
				
			||||||
 | 
					        return (_KBType): Instance of KnowledgeBase subclass generated from file.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        raise NotImplementedError(
 | 
				
			||||||
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="generate_from_disk", name=cls.__name__)
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __len__(self) -> int:
 | 
				
			||||||
 | 
					        """Returns number of entities in the KnowledgeBase.
 | 
				
			||||||
 | 
					        RETURNS (int): Number of entities in the KnowledgeBase.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        raise NotImplementedError(
 | 
				
			||||||
 | 
					            Errors.E1044.format(parent="KnowledgeBase", method="__len__", name=self.__name__)
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,5 +1,5 @@
 | 
				
			||||||
# cython: infer_types=True, profile=True
 | 
					# cython: infer_types=True, profile=True
 | 
				
			||||||
from typing import Iterable, Callable, Dict, Any, Union
 | 
					from typing import Iterable, Callable, Dict, Any, Union, Optional
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import srsly
 | 
					import srsly
 | 
				
			||||||
from preshed.maps cimport PreshMap
 | 
					from preshed.maps cimport PreshMap
 | 
				
			||||||
| 
						 | 
					@ -11,7 +11,7 @@ from libcpp.vector cimport vector
 | 
				
			||||||
from pathlib import Path
 | 
					from pathlib import Path
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ..tokens import Span
 | 
					from ..tokens import Span, Doc
 | 
				
			||||||
from ..typedefs cimport hash_t
 | 
					from ..typedefs cimport hash_t
 | 
				
			||||||
from ..errors import Errors, Warnings
 | 
					from ..errors import Errors, Warnings
 | 
				
			||||||
from .. import util
 | 
					from .. import util
 | 
				
			||||||
| 
						 | 
					@ -49,6 +49,14 @@ cdef class InMemoryLookupKB(KnowledgeBase):
 | 
				
			||||||
    def is_empty(self):
 | 
					    def is_empty(self):
 | 
				
			||||||
        return len(self) == 0
 | 
					        return len(self) == 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @classmethod
 | 
				
			||||||
 | 
					    def generate_from_disk(
 | 
				
			||||||
 | 
					        cls, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()
 | 
				
			||||||
 | 
					    ) -> "InMemoryLookupKB":
 | 
				
			||||||
 | 
					        kb = InMemoryLookupKB(vocab=Vocab(strings=["."]), entity_vector_length=1)
 | 
				
			||||||
 | 
					        kb.from_disk(path)
 | 
				
			||||||
 | 
					        return kb
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __len__(self):
 | 
					    def __len__(self):
 | 
				
			||||||
        return self.get_size_entities()
 | 
					        return self.get_size_entities()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -227,7 +235,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
 | 
				
			||||||
            self._aliases_table[alias_index] = alias_entry
 | 
					            self._aliases_table[alias_index] = alias_entry
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_candidates(self, mention: Span) -> Iterable[Candidate]:
 | 
					    def get_candidates(self, mention: Span) -> Iterable[Candidate]:
 | 
				
			||||||
        return self.get_alias_candidates(mention.text)  # type: ignore
 | 
					        return self.get_alias_candidates(mention.text)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_alias_candidates(self, str alias) -> Iterable[Candidate]:
 | 
					    def get_alias_candidates(self, str alias) -> Iterable[Candidate]:
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
| 
						 | 
					@ -241,14 +249,18 @@ cdef class InMemoryLookupKB(KnowledgeBase):
 | 
				
			||||||
        alias_index = <int64_t>self._alias_index.get(alias_hash)
 | 
					        alias_index = <int64_t>self._alias_index.get(alias_hash)
 | 
				
			||||||
        alias_entry = self._aliases_table[alias_index]
 | 
					        alias_entry = self._aliases_table[alias_index]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return [Candidate(kb=self,
 | 
					        return [
 | 
				
			||||||
 | 
					            Candidate(
 | 
				
			||||||
 | 
					                retrieve_string_from_hash=self.vocab.strings.__getitem__,
 | 
				
			||||||
                entity_hash=self._entries[entry_index].entity_hash,
 | 
					                entity_hash=self._entries[entry_index].entity_hash,
 | 
				
			||||||
                entity_freq=self._entries[entry_index].freq,
 | 
					                entity_freq=self._entries[entry_index].freq,
 | 
				
			||||||
                entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
 | 
					                entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
 | 
				
			||||||
                alias_hash=alias_hash,
 | 
					                alias_hash=alias_hash,
 | 
				
			||||||
                          prior_prob=prior_prob)
 | 
					                prior_prob=prior_prob
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
 | 
					            for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
 | 
				
			||||||
                if entry_index != 0]
 | 
					            if entry_index != 0
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_vector(self, str entity):
 | 
					    def get_vector(self, str entity):
 | 
				
			||||||
        cdef hash_t entity_hash = self.vocab.strings[entity]
 | 
					        cdef hash_t entity_hash = self.vocab.strings[entity]
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,14 +1,14 @@
 | 
				
			||||||
from pathlib import Path
 | 
					from pathlib import Path
 | 
				
			||||||
from typing import Optional, Callable, Iterable, List, Tuple
 | 
					from typing import Optional, Callable, Iterable, List, Tuple, Iterator
 | 
				
			||||||
from thinc.types import Floats2d
 | 
					from thinc.types import Floats2d
 | 
				
			||||||
from thinc.api import chain, list2ragged, reduce_mean, residual
 | 
					from thinc.api import chain, list2ragged, reduce_mean, residual
 | 
				
			||||||
from thinc.api import Model, Maxout, Linear, tuplify, Ragged
 | 
					from thinc.api import Model, Maxout, Linear, tuplify, Ragged
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ...util import registry
 | 
					from ...util import registry
 | 
				
			||||||
from ...kb import KnowledgeBase, InMemoryLookupKB
 | 
					from ...kb import KnowledgeBase, InMemoryLookupKB
 | 
				
			||||||
from ...kb import Candidate, get_candidates, get_candidates_batch
 | 
					from ...kb import Candidate
 | 
				
			||||||
from ...vocab import Vocab
 | 
					from ...vocab import Vocab
 | 
				
			||||||
from ...tokens import Span, Doc
 | 
					from ...tokens import Span, Doc, SpanGroup
 | 
				
			||||||
from ..extract_spans import extract_spans
 | 
					from ..extract_spans import extract_spans
 | 
				
			||||||
from ...errors import Errors
 | 
					from ...errors import Errors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -89,14 +89,6 @@ def load_kb(
 | 
				
			||||||
    return kb_from_file
 | 
					    return kb_from_file
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@registry.misc("spacy.EmptyKB.v2")
 | 
					 | 
				
			||||||
def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
 | 
					 | 
				
			||||||
    def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
 | 
					 | 
				
			||||||
        return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return empty_kb_factory
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@registry.misc("spacy.EmptyKB.v1")
 | 
					@registry.misc("spacy.EmptyKB.v1")
 | 
				
			||||||
def empty_kb(
 | 
					def empty_kb(
 | 
				
			||||||
    entity_vector_length: int,
 | 
					    entity_vector_length: int,
 | 
				
			||||||
| 
						 | 
					@ -107,13 +99,44 @@ def empty_kb(
 | 
				
			||||||
    return empty_kb_factory
 | 
					    return empty_kb_factory
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@registry.misc("spacy.EmptyKB.v2")
 | 
				
			||||||
 | 
					def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
 | 
				
			||||||
 | 
					    def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
 | 
				
			||||||
 | 
					        return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return empty_kb_factory
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Return candidate entities for a given mention and fetching appropriate entries from the index.
 | 
				
			||||||
 | 
					    kb (KnowledgeBase): Knowledge base to query.
 | 
				
			||||||
 | 
					    mention (Span): Entity mention for which to identify candidates.
 | 
				
			||||||
 | 
					    RETURNS (Iterable[Candidate]): Identified candidates.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    return kb.get_candidates(mention)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_candidates_all(
 | 
				
			||||||
 | 
					    kb: KnowledgeBase, mentions: Iterator[SpanGroup]
 | 
				
			||||||
 | 
					) -> Iterator[Iterable[Iterable[Candidate]]]:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Return candidate entities for the given mentions and fetching appropriate entries from the index.
 | 
				
			||||||
 | 
					    kb (KnowledgeBase): Knowledge base to query.
 | 
				
			||||||
 | 
					    mentions (Iterator[SpanGroup]): Mentions per doc as SpanGroup instance.
 | 
				
			||||||
 | 
					    RETURNS (Iterator[Iterable[Iterable[Candidate]]]): Identified candidates per document.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    return kb.get_candidates_all(mentions)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@registry.misc("spacy.CandidateGenerator.v1")
 | 
					@registry.misc("spacy.CandidateGenerator.v1")
 | 
				
			||||||
def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
 | 
					def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
 | 
				
			||||||
    return get_candidates
 | 
					    return get_candidates
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@registry.misc("spacy.CandidateBatchGenerator.v1")
 | 
					@registry.misc("spacy.CandidateAllGenerator.v1")
 | 
				
			||||||
def create_candidates_batch() -> Callable[
 | 
					def create_candidates_all() -> Callable[
 | 
				
			||||||
    [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
 | 
					    [KnowledgeBase, Iterator[SpanGroup]],
 | 
				
			||||||
 | 
					    Iterator[Iterable[Iterable[Candidate]]],
 | 
				
			||||||
]:
 | 
					]:
 | 
				
			||||||
    return get_candidates_batch
 | 
					    return get_candidates_all
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,4 +1,13 @@
 | 
				
			||||||
from typing import Optional, Iterable, Callable, Dict, Union, List, Any
 | 
					from typing import (
 | 
				
			||||||
 | 
					    Optional,
 | 
				
			||||||
 | 
					    Iterable,
 | 
				
			||||||
 | 
					    Callable,
 | 
				
			||||||
 | 
					    Dict,
 | 
				
			||||||
 | 
					    Union,
 | 
				
			||||||
 | 
					    List,
 | 
				
			||||||
 | 
					    Any,
 | 
				
			||||||
 | 
					    Iterator,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from thinc.types import Floats2d
 | 
					from thinc.types import Floats2d
 | 
				
			||||||
from pathlib import Path
 | 
					from pathlib import Path
 | 
				
			||||||
from itertools import islice
 | 
					from itertools import islice
 | 
				
			||||||
| 
						 | 
					@ -8,8 +17,7 @@ from thinc.api import CosineDistance, Model, Optimizer, Config
 | 
				
			||||||
from thinc.api import set_dropout_rate
 | 
					from thinc.api import set_dropout_rate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ..kb import KnowledgeBase, Candidate
 | 
					from ..kb import KnowledgeBase, Candidate
 | 
				
			||||||
from ..ml import empty_kb
 | 
					from ..tokens import Doc, Span, SpanGroup
 | 
				
			||||||
from ..tokens import Doc, Span
 | 
					 | 
				
			||||||
from .pipe import deserialize_config
 | 
					from .pipe import deserialize_config
 | 
				
			||||||
from .legacy.entity_linker import EntityLinker_v1
 | 
					from .legacy.entity_linker import EntityLinker_v1
 | 
				
			||||||
from .trainable_pipe import TrainablePipe
 | 
					from .trainable_pipe import TrainablePipe
 | 
				
			||||||
| 
						 | 
					@ -53,12 +61,12 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
 | 
				
			||||||
        "incl_context": True,
 | 
					        "incl_context": True,
 | 
				
			||||||
        "entity_vector_length": 64,
 | 
					        "entity_vector_length": 64,
 | 
				
			||||||
        "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
 | 
					        "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
 | 
				
			||||||
        "get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
 | 
					        "get_candidates_all": {"@misc": "spacy.CandidateAllGenerator.v1"},
 | 
				
			||||||
        "generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
 | 
					        "generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
 | 
				
			||||||
        "overwrite": True,
 | 
					        "overwrite": True,
 | 
				
			||||||
        "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
 | 
					        "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
 | 
				
			||||||
        "use_gold_ents": True,
 | 
					        "use_gold_ents": True,
 | 
				
			||||||
        "candidates_batch_size": 1,
 | 
					        "candidates_doc_mode": False,
 | 
				
			||||||
        "threshold": None,
 | 
					        "threshold": None,
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    default_score_weights={
 | 
					    default_score_weights={
 | 
				
			||||||
| 
						 | 
					@ -78,14 +86,14 @@ def make_entity_linker(
 | 
				
			||||||
    incl_context: bool,
 | 
					    incl_context: bool,
 | 
				
			||||||
    entity_vector_length: int,
 | 
					    entity_vector_length: int,
 | 
				
			||||||
    get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
 | 
					    get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
 | 
				
			||||||
    get_candidates_batch: Callable[
 | 
					    get_candidates_all: Callable[
 | 
				
			||||||
        [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
 | 
					        [KnowledgeBase, Iterator[SpanGroup]], Iterator[Iterable[Iterable[Candidate]]]
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
    generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
 | 
					    generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
 | 
				
			||||||
    overwrite: bool,
 | 
					    overwrite: bool,
 | 
				
			||||||
    scorer: Optional[Callable],
 | 
					    scorer: Optional[Callable],
 | 
				
			||||||
    use_gold_ents: bool,
 | 
					    use_gold_ents: bool,
 | 
				
			||||||
    candidates_batch_size: int,
 | 
					    candidates_doc_mode: bool,
 | 
				
			||||||
    threshold: Optional[float] = None,
 | 
					    threshold: Optional[float] = None,
 | 
				
			||||||
):
 | 
					):
 | 
				
			||||||
    """Construct an EntityLinker component.
 | 
					    """Construct an EntityLinker component.
 | 
				
			||||||
| 
						 | 
					@ -98,16 +106,18 @@ def make_entity_linker(
 | 
				
			||||||
    incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
					    incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
				
			||||||
    incl_context (bool): Whether or not to include the local context in the model.
 | 
					    incl_context (bool): Whether or not to include the local context in the model.
 | 
				
			||||||
    entity_vector_length (int): Size of encoding vectors in the KB.
 | 
					    entity_vector_length (int): Size of encoding vectors in the KB.
 | 
				
			||||||
    get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
 | 
					    get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function producing a list of
 | 
				
			||||||
        produces a list of candidates, given a certain knowledge base and a textual mention.
 | 
					        candidates, given a certain knowledge base and a textual mention.
 | 
				
			||||||
    get_candidates_batch (
 | 
					    get_candidates_all (Callable[[KnowledgeBase, Iterator[SpanGroup]], Iterator[Iterable[Iterable[Candidate]]]]):
 | 
				
			||||||
        Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
 | 
					        Function producing a list of candidates per document, given a certain knowledge base and several textual
 | 
				
			||||||
        ): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
 | 
					        documents with textual mentions.
 | 
				
			||||||
    generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
 | 
					    generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
 | 
				
			||||||
    scorer (Optional[Callable]): The scoring method.
 | 
					    scorer (Optional[Callable]): The scoring method.
 | 
				
			||||||
    use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
 | 
					    use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
 | 
				
			||||||
        component must provide entity annotations.
 | 
					        component must provide entity annotations.
 | 
				
			||||||
    candidates_batch_size (int): Size of batches for entity candidate generation.
 | 
					    candidates_doc_mode (bool): Whether or not to operate candidate generation in doc mode, i.e. to provide a generator
 | 
				
			||||||
 | 
					        yielding entities per document (candidate generator callable is called only once in this case). If False,
 | 
				
			||||||
 | 
					        the candidate generator is called once per entity.
 | 
				
			||||||
    threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
 | 
					    threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
 | 
				
			||||||
        prediction is discarded. If None, predictions are not filtered by any threshold.
 | 
					        prediction is discarded. If None, predictions are not filtered by any threshold.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
| 
						 | 
					@ -137,12 +147,12 @@ def make_entity_linker(
 | 
				
			||||||
        incl_context=incl_context,
 | 
					        incl_context=incl_context,
 | 
				
			||||||
        entity_vector_length=entity_vector_length,
 | 
					        entity_vector_length=entity_vector_length,
 | 
				
			||||||
        get_candidates=get_candidates,
 | 
					        get_candidates=get_candidates,
 | 
				
			||||||
        get_candidates_batch=get_candidates_batch,
 | 
					        get_candidates_all=get_candidates_all,
 | 
				
			||||||
        generate_empty_kb=generate_empty_kb,
 | 
					        generate_empty_kb=generate_empty_kb,
 | 
				
			||||||
        overwrite=overwrite,
 | 
					        overwrite=overwrite,
 | 
				
			||||||
        scorer=scorer,
 | 
					        scorer=scorer,
 | 
				
			||||||
        use_gold_ents=use_gold_ents,
 | 
					        use_gold_ents=use_gold_ents,
 | 
				
			||||||
        candidates_batch_size=candidates_batch_size,
 | 
					        candidates_doc_mode=candidates_doc_mode,
 | 
				
			||||||
        threshold=threshold,
 | 
					        threshold=threshold,
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -176,14 +186,15 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
        incl_context: bool,
 | 
					        incl_context: bool,
 | 
				
			||||||
        entity_vector_length: int,
 | 
					        entity_vector_length: int,
 | 
				
			||||||
        get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
 | 
					        get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
 | 
				
			||||||
        get_candidates_batch: Callable[
 | 
					        get_candidates_all: Callable[
 | 
				
			||||||
            [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
 | 
					            [KnowledgeBase, Iterator[SpanGroup]],
 | 
				
			||||||
 | 
					            Iterator[Iterable[Iterable[Candidate]]],
 | 
				
			||||||
        ],
 | 
					        ],
 | 
				
			||||||
        generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
 | 
					        generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
 | 
				
			||||||
        overwrite: bool = BACKWARD_OVERWRITE,
 | 
					        overwrite: bool = BACKWARD_OVERWRITE,
 | 
				
			||||||
        scorer: Optional[Callable] = entity_linker_score,
 | 
					        scorer: Optional[Callable] = entity_linker_score,
 | 
				
			||||||
        use_gold_ents: bool,
 | 
					        use_gold_ents: bool,
 | 
				
			||||||
        candidates_batch_size: int,
 | 
					        candidates_doc_mode: bool,
 | 
				
			||||||
        threshold: Optional[float] = None,
 | 
					        threshold: Optional[float] = None,
 | 
				
			||||||
    ) -> None:
 | 
					    ) -> None:
 | 
				
			||||||
        """Initialize an entity linker.
 | 
					        """Initialize an entity linker.
 | 
				
			||||||
| 
						 | 
					@ -197,17 +208,18 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
        incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
					        incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
				
			||||||
        incl_context (bool): Whether or not to include the local context in the model.
 | 
					        incl_context (bool): Whether or not to include the local context in the model.
 | 
				
			||||||
        entity_vector_length (int): Size of encoding vectors in the KB.
 | 
					        entity_vector_length (int): Size of encoding vectors in the KB.
 | 
				
			||||||
        get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
 | 
					        get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function producing a list
 | 
				
			||||||
            produces a list of candidates, given a certain knowledge base and a textual mention.
 | 
					            of candidates, given a certain knowledge base and a textual mention.
 | 
				
			||||||
        get_candidates_batch (
 | 
					        get_candidates_all (Callable[[KnowledgeBase, Iterator[SpanGroup]], Iterator[Iterable[Iterable[Candidate]]]]):
 | 
				
			||||||
            Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
 | 
					            Function producing a list of candidates per document, given a certain knowledge base and several textual
 | 
				
			||||||
            Iterable[Candidate]]
 | 
					            documents with textual mentions.
 | 
				
			||||||
            ): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
 | 
					 | 
				
			||||||
        generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
 | 
					        generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
 | 
				
			||||||
        scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
 | 
					        scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
 | 
				
			||||||
        use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
 | 
					        use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
 | 
				
			||||||
            component must provide entity annotations.
 | 
					            component must provide entity annotations.
 | 
				
			||||||
        candidates_batch_size (int): Size of batches for entity candidate generation.
 | 
					        candidates_doc_mode (bool): Whether or not to operate candidate generation in doc mode, i.e. to provide a
 | 
				
			||||||
 | 
					            generator yielding entities per document (candidate generator callable is called only once in this case). If
 | 
				
			||||||
 | 
					            False, the candidate generator is called once per entity.
 | 
				
			||||||
        threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the
 | 
					        threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the
 | 
				
			||||||
            threshold, prediction is discarded. If None, predictions are not filtered by any threshold.
 | 
					            threshold, prediction is discarded. If None, predictions are not filtered by any threshold.
 | 
				
			||||||
        DOCS: https://spacy.io/api/entitylinker#init
 | 
					        DOCS: https://spacy.io/api/entitylinker#init
 | 
				
			||||||
| 
						 | 
					@ -231,18 +243,16 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
        self.incl_prior = incl_prior
 | 
					        self.incl_prior = incl_prior
 | 
				
			||||||
        self.incl_context = incl_context
 | 
					        self.incl_context = incl_context
 | 
				
			||||||
        self.get_candidates = get_candidates
 | 
					        self.get_candidates = get_candidates
 | 
				
			||||||
        self.get_candidates_batch = get_candidates_batch
 | 
					        self.get_candidates_all = get_candidates_all
 | 
				
			||||||
 | 
					        self.generate_empty_kb = generate_empty_kb
 | 
				
			||||||
        self.cfg: Dict[str, Any] = {"overwrite": overwrite}
 | 
					        self.cfg: Dict[str, Any] = {"overwrite": overwrite}
 | 
				
			||||||
        self.distance = CosineDistance(normalize=False)
 | 
					        self.distance = CosineDistance(normalize=False)
 | 
				
			||||||
        self.kb = generate_empty_kb(self.vocab, entity_vector_length)
 | 
					        self.kb = generate_empty_kb(self.vocab, entity_vector_length)
 | 
				
			||||||
        self.scorer = scorer
 | 
					        self.scorer = scorer
 | 
				
			||||||
        self.use_gold_ents = use_gold_ents
 | 
					        self.use_gold_ents = use_gold_ents
 | 
				
			||||||
        self.candidates_batch_size = candidates_batch_size
 | 
					        self.candidates_doc_mode = candidates_doc_mode
 | 
				
			||||||
        self.threshold = threshold
 | 
					        self.threshold = threshold
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if candidates_batch_size < 1:
 | 
					 | 
				
			||||||
            raise ValueError(Errors.E1044)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
 | 
					    def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
 | 
				
			||||||
        """Define the KB of this pipe by providing a function that will
 | 
					        """Define the KB of this pipe by providing a function that will
 | 
				
			||||||
        create it using this object's vocab."""
 | 
					        create it using this object's vocab."""
 | 
				
			||||||
| 
						 | 
					@ -319,7 +329,6 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        If one isn't present, then the update step needs to be skipped.
 | 
					        If one isn't present, then the update step needs to be skipped.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
 | 
					 | 
				
			||||||
        for eg in examples:
 | 
					        for eg in examples:
 | 
				
			||||||
            for ent in eg.predicted.ents:
 | 
					            for ent in eg.predicted.ents:
 | 
				
			||||||
                candidates = list(self.get_candidates(self.kb, ent))
 | 
					                candidates = list(self.get_candidates(self.kb, ent))
 | 
				
			||||||
| 
						 | 
					@ -445,35 +454,51 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
            return final_kb_ids
 | 
					            return final_kb_ids
 | 
				
			||||||
        if isinstance(docs, Doc):
 | 
					        if isinstance(docs, Doc):
 | 
				
			||||||
            docs = [docs]
 | 
					            docs = [docs]
 | 
				
			||||||
        for i, doc in enumerate(docs):
 | 
					
 | 
				
			||||||
            if len(doc) == 0:
 | 
					        docs = list(docs)
 | 
				
			||||||
 | 
					        # Determine which entities are to be ignored due to labels_discard.
 | 
				
			||||||
 | 
					        valid_ent_idx_per_doc = (
 | 
				
			||||||
 | 
					            [
 | 
				
			||||||
 | 
					                idx
 | 
				
			||||||
 | 
					                for idx in range(len(doc.ents))
 | 
				
			||||||
 | 
					                if doc.ents[idx].label_ not in self.labels_discard
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					            for doc in docs
 | 
				
			||||||
 | 
					            if len(doc) and len(doc.ents)
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Call candidate generator.
 | 
				
			||||||
 | 
					        if self.candidates_doc_mode:
 | 
				
			||||||
 | 
					            all_ent_cands = self.get_candidates_all(
 | 
				
			||||||
 | 
					                self.kb,
 | 
				
			||||||
 | 
					                (
 | 
				
			||||||
 | 
					                    SpanGroup(
 | 
				
			||||||
 | 
					                        doc,
 | 
				
			||||||
 | 
					                        spans=[doc.ents[idx] for idx in next(valid_ent_idx_per_doc)],
 | 
				
			||||||
 | 
					                    )
 | 
				
			||||||
 | 
					                    for doc in docs
 | 
				
			||||||
 | 
					                    if len(doc) and len(doc.ents)
 | 
				
			||||||
 | 
					                ),
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # Alternative: collect entities the old-fashioned way - by retrieving entities individually.
 | 
				
			||||||
 | 
					            all_ent_cands = (
 | 
				
			||||||
 | 
					                [
 | 
				
			||||||
 | 
					                    self.get_candidates(self.kb, doc.ents[idx])
 | 
				
			||||||
 | 
					                    for idx in next(valid_ent_idx_per_doc)
 | 
				
			||||||
 | 
					                ]
 | 
				
			||||||
 | 
					                for doc in docs
 | 
				
			||||||
 | 
					                if len(doc) and len(doc.ents)
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for doc_idx, doc in enumerate(docs):
 | 
				
			||||||
 | 
					            if len(doc) == 0 or len(doc.ents) == 0:
 | 
				
			||||||
                continue
 | 
					                continue
 | 
				
			||||||
            sentences = [s for s in doc.sents]
 | 
					            sentences = [s for s in doc.sents]
 | 
				
			||||||
 | 
					            doc_ent_cands = list(next(all_ent_cands))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # Loop over entities in batches.
 | 
					            # Looping over candidate entities for this doc. (TODO: rewrite)
 | 
				
			||||||
            for ent_idx in range(0, len(doc.ents), self.candidates_batch_size):
 | 
					            for ent_cand_idx, ent in enumerate(doc.ents):
 | 
				
			||||||
                ent_batch = doc.ents[ent_idx : ent_idx + self.candidates_batch_size]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                # Look up candidate entities.
 | 
					 | 
				
			||||||
                valid_ent_idx = [
 | 
					 | 
				
			||||||
                    idx
 | 
					 | 
				
			||||||
                    for idx in range(len(ent_batch))
 | 
					 | 
				
			||||||
                    if ent_batch[idx].label_ not in self.labels_discard
 | 
					 | 
				
			||||||
                ]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                batch_candidates = list(
 | 
					 | 
				
			||||||
                    self.get_candidates_batch(
 | 
					 | 
				
			||||||
                        self.kb, [ent_batch[idx] for idx in valid_ent_idx]
 | 
					 | 
				
			||||||
                    )
 | 
					 | 
				
			||||||
                    if self.candidates_batch_size > 1
 | 
					 | 
				
			||||||
                    else [
 | 
					 | 
				
			||||||
                        self.get_candidates(self.kb, ent_batch[idx])
 | 
					 | 
				
			||||||
                        for idx in valid_ent_idx
 | 
					 | 
				
			||||||
                    ]
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                # Looping through each entity in batch (TODO: rewrite)
 | 
					 | 
				
			||||||
                for j, ent in enumerate(ent_batch):
 | 
					 | 
				
			||||||
                assert hasattr(ent, "sents")
 | 
					                assert hasattr(ent, "sents")
 | 
				
			||||||
                sents = list(ent.sents)
 | 
					                sents = list(ent.sents)
 | 
				
			||||||
                sent_indices = (
 | 
					                sent_indices = (
 | 
				
			||||||
| 
						 | 
					@ -491,7 +516,6 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
                    start_token = sentences[start_sentence].start
 | 
					                    start_token = sentences[start_sentence].start
 | 
				
			||||||
                    end_token = sentences[end_sentence].end
 | 
					                    end_token = sentences[end_sentence].end
 | 
				
			||||||
                    sent_doc = doc[start_token:end_token].as_doc()
 | 
					                    sent_doc = doc[start_token:end_token].as_doc()
 | 
				
			||||||
 | 
					 | 
				
			||||||
                    # currently, the context is the same for each entity in a sentence (should be refined)
 | 
					                    # currently, the context is the same for each entity in a sentence (should be refined)
 | 
				
			||||||
                    sentence_encoding = self.model.predict([sent_doc])[0]
 | 
					                    sentence_encoding = self.model.predict([sent_doc])[0]
 | 
				
			||||||
                    sentence_encoding_t = sentence_encoding.T
 | 
					                    sentence_encoding_t = sentence_encoding.T
 | 
				
			||||||
| 
						 | 
					@ -501,7 +525,7 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
                    # ignoring this entity - setting to NIL
 | 
					                    # ignoring this entity - setting to NIL
 | 
				
			||||||
                    final_kb_ids.append(self.NIL)
 | 
					                    final_kb_ids.append(self.NIL)
 | 
				
			||||||
                else:
 | 
					                else:
 | 
				
			||||||
                        candidates = list(batch_candidates[j])
 | 
					                    candidates = list(doc_ent_cands[ent_cand_idx])
 | 
				
			||||||
                    if not candidates:
 | 
					                    if not candidates:
 | 
				
			||||||
                        # no prediction possible for this entity - setting to NIL
 | 
					                        # no prediction possible for this entity - setting to NIL
 | 
				
			||||||
                        final_kb_ids.append(self.NIL)
 | 
					                        final_kb_ids.append(self.NIL)
 | 
				
			||||||
| 
						 | 
					@ -511,10 +535,12 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
                    else:
 | 
					                    else:
 | 
				
			||||||
                        random.shuffle(candidates)
 | 
					                        random.shuffle(candidates)
 | 
				
			||||||
                        # set all prior probabilities to 0 if incl_prior=False
 | 
					                        # set all prior probabilities to 0 if incl_prior=False
 | 
				
			||||||
                            prior_probs = xp.asarray([c.prior_prob for c in candidates])
 | 
					                        scores = prior_probs = xp.asarray(
 | 
				
			||||||
                            if not self.incl_prior:
 | 
					                            [
 | 
				
			||||||
                                prior_probs = xp.asarray([0.0 for _ in candidates])
 | 
					                                c.prior_prob if self.incl_prior else 0.0
 | 
				
			||||||
                            scores = prior_probs
 | 
					                                for c in candidates
 | 
				
			||||||
 | 
					                            ]
 | 
				
			||||||
 | 
					                        )
 | 
				
			||||||
                        # add in similarity from the context
 | 
					                        # add in similarity from the context
 | 
				
			||||||
                        if self.incl_context:
 | 
					                        if self.incl_context:
 | 
				
			||||||
                            entity_encodings = xp.asarray(
 | 
					                            entity_encodings = xp.asarray(
 | 
				
			||||||
| 
						 | 
					@ -537,8 +563,7 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
                            scores = prior_probs + sims - (prior_probs * sims)
 | 
					                            scores = prior_probs + sims - (prior_probs * sims)
 | 
				
			||||||
                        final_kb_ids.append(
 | 
					                        final_kb_ids.append(
 | 
				
			||||||
                            candidates[scores.argmax().item()].entity_
 | 
					                            candidates[scores.argmax().item()].entity_
 | 
				
			||||||
                                if self.threshold is None
 | 
					                            if self.threshold is None or scores.max() >= self.threshold
 | 
				
			||||||
                                or scores.max() >= self.threshold
 | 
					 | 
				
			||||||
                            else EntityLinker.NIL
 | 
					                            else EntityLinker.NIL
 | 
				
			||||||
                        )
 | 
					                        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -547,6 +572,7 @@ class EntityLinker(TrainablePipe):
 | 
				
			||||||
                method="predict", msg="result variables not of equal length"
 | 
					                method="predict", msg="result variables not of equal length"
 | 
				
			||||||
            )
 | 
					            )
 | 
				
			||||||
            raise RuntimeError(err)
 | 
					            raise RuntimeError(err)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return final_kb_ids
 | 
					        return final_kb_ids
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
 | 
					    def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,4 +1,4 @@
 | 
				
			||||||
from typing import Callable, Iterable, Dict, Any, Tuple
 | 
					from typing import Callable, Iterable, Dict, Any, Iterator, Tuple
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import pytest
 | 
					import pytest
 | 
				
			||||||
from numpy.testing import assert_equal
 | 
					from numpy.testing import assert_equal
 | 
				
			||||||
| 
						 | 
					@ -6,16 +6,16 @@ from numpy.testing import assert_equal
 | 
				
			||||||
from spacy import registry, util, Language
 | 
					from spacy import registry, util, Language
 | 
				
			||||||
from spacy.attrs import ENT_KB_ID
 | 
					from spacy.attrs import ENT_KB_ID
 | 
				
			||||||
from spacy.compat import pickle
 | 
					from spacy.compat import pickle
 | 
				
			||||||
from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
 | 
					from spacy.kb import Candidate, InMemoryLookupKB, KnowledgeBase
 | 
				
			||||||
from spacy.lang.en import English
 | 
					from spacy.lang.en import English
 | 
				
			||||||
from spacy.ml import load_kb
 | 
					from spacy.ml import load_kb
 | 
				
			||||||
from spacy.ml.models.entity_linker import build_span_maker
 | 
					from spacy.ml.models.entity_linker import build_span_maker, get_candidates
 | 
				
			||||||
from spacy.pipeline import EntityLinker
 | 
					from spacy.pipeline import EntityLinker
 | 
				
			||||||
from spacy.pipeline.legacy import EntityLinker_v1
 | 
					from spacy.pipeline.legacy import EntityLinker_v1
 | 
				
			||||||
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | 
					from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | 
				
			||||||
from spacy.scorer import Scorer
 | 
					from spacy.scorer import Scorer
 | 
				
			||||||
from spacy.tests.util import make_tempdir
 | 
					from spacy.tests.util import make_tempdir
 | 
				
			||||||
from spacy.tokens import Span, Doc
 | 
					from spacy.tokens import Span, Doc, SpanGroup
 | 
				
			||||||
from spacy.training import Example
 | 
					from spacy.training import Example
 | 
				
			||||||
from spacy.util import ensure_path
 | 
					from spacy.util import ensure_path
 | 
				
			||||||
from spacy.vocab import Vocab
 | 
					from spacy.vocab import Vocab
 | 
				
			||||||
| 
						 | 
					@ -168,7 +168,7 @@ def test_no_entities():
 | 
				
			||||||
            {
 | 
					            {
 | 
				
			||||||
                "sent_starts": [1, 0, 0, 0, 0],
 | 
					                "sent_starts": [1, 0, 0, 0, 0],
 | 
				
			||||||
            },
 | 
					            },
 | 
				
			||||||
        )
 | 
					        ),
 | 
				
			||||||
    ]
 | 
					    ]
 | 
				
			||||||
    nlp = English()
 | 
					    nlp = English()
 | 
				
			||||||
    vector_length = 3
 | 
					    vector_length = 3
 | 
				
			||||||
| 
						 | 
					@ -489,11 +489,19 @@ def test_el_pipe_configuration(nlp):
 | 
				
			||||||
    assert doc[1].ent_kb_id_ == ""
 | 
					    assert doc[1].ent_kb_id_ == ""
 | 
				
			||||||
    assert doc[2].ent_kb_id_ == "Q2"
 | 
					    assert doc[2].ent_kb_id_ == "Q2"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_lowercased_candidates(kb, span):
 | 
					    # Replace the pipe with a new one with with a different candidate generator.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def get_lowercased_candidates(kb: InMemoryLookupKB, span: Span):
 | 
				
			||||||
        return kb.get_alias_candidates(span.text.lower())
 | 
					        return kb.get_alias_candidates(span.text.lower())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_lowercased_candidates_batch(kb, spans):
 | 
					    def get_lowercased_candidates_all(
 | 
				
			||||||
        return [get_lowercased_candidates(kb, span) for span in spans]
 | 
					        kb: InMemoryLookupKB, mentions: Iterator[SpanGroup]
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					        for doc_mentions in mentions:
 | 
				
			||||||
 | 
					            yield [
 | 
				
			||||||
 | 
					                get_lowercased_candidates(kb, doc_mentions[idx])
 | 
				
			||||||
 | 
					                for idx in range(len(doc_mentions))
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @registry.misc("spacy.LowercaseCandidateGenerator.v1")
 | 
					    @registry.misc("spacy.LowercaseCandidateGenerator.v1")
 | 
				
			||||||
    def create_candidates() -> Callable[
 | 
					    def create_candidates() -> Callable[
 | 
				
			||||||
| 
						 | 
					@ -501,29 +509,40 @@ def test_el_pipe_configuration(nlp):
 | 
				
			||||||
    ]:
 | 
					    ]:
 | 
				
			||||||
        return get_lowercased_candidates
 | 
					        return get_lowercased_candidates
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @registry.misc("spacy.LowercaseCandidateBatchGenerator.v1")
 | 
					    @registry.misc("spacy.LowercaseCandidateAllGenerator.v1")
 | 
				
			||||||
    def create_candidates_batch() -> Callable[
 | 
					    def create_candidates_batch() -> Callable[
 | 
				
			||||||
        [InMemoryLookupKB, Iterable["Span"]], Iterable[Iterable[Candidate]]
 | 
					        [InMemoryLookupKB, Iterator[SpanGroup]],
 | 
				
			||||||
 | 
					        Iterator[Iterable[Iterable[Candidate]]],
 | 
				
			||||||
    ]:
 | 
					    ]:
 | 
				
			||||||
        return get_lowercased_candidates_batch
 | 
					        return get_lowercased_candidates_all
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # replace the pipe with a new one with with a different candidate generator
 | 
					    def test_reconfigured_el(candidates_doc_mode: bool, doc_text: str) -> None:
 | 
				
			||||||
    entity_linker = nlp.replace_pipe(
 | 
					        """Test reconfigured EL for correct results.
 | 
				
			||||||
 | 
					        candidates_doc_mode (bool): candidates_doc_mode in pipe config.
 | 
				
			||||||
 | 
					        doc_text (str): Text to infer.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        _entity_linker = nlp.replace_pipe(
 | 
				
			||||||
            "entity_linker",
 | 
					            "entity_linker",
 | 
				
			||||||
            "entity_linker",
 | 
					            "entity_linker",
 | 
				
			||||||
            config={
 | 
					            config={
 | 
				
			||||||
                "incl_context": False,
 | 
					                "incl_context": False,
 | 
				
			||||||
 | 
					                "incl_prior": True,
 | 
				
			||||||
 | 
					                "candidates_doc_mode": candidates_doc_mode,
 | 
				
			||||||
                "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
 | 
					                "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
 | 
				
			||||||
            "get_candidates_batch": {
 | 
					                "get_candidates_all": {
 | 
				
			||||||
                "@misc": "spacy.LowercaseCandidateBatchGenerator.v1"
 | 
					                    "@misc": "spacy.LowercaseCandidateAllGenerator.v1"
 | 
				
			||||||
                },
 | 
					                },
 | 
				
			||||||
            },
 | 
					            },
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
    entity_linker.set_kb(create_kb)
 | 
					        _entity_linker.set_kb(create_kb)
 | 
				
			||||||
    doc = nlp(text)
 | 
					        _doc = nlp(doc_text)
 | 
				
			||||||
    assert doc[0].ent_kb_id_ == "Q2"
 | 
					        assert _doc[0].ent_kb_id_ == "Q2"
 | 
				
			||||||
    assert doc[1].ent_kb_id_ == ""
 | 
					        assert _doc[1].ent_kb_id_ == ""
 | 
				
			||||||
    assert doc[2].ent_kb_id_ == "Q2"
 | 
					        assert _doc[2].ent_kb_id_ == "Q2"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Test individual and doc-wise candidate generation.
 | 
				
			||||||
 | 
					    test_reconfigured_el(False, text)
 | 
				
			||||||
 | 
					    test_reconfigured_el(True, text)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def test_nel_nsents(nlp):
 | 
					def test_nel_nsents(nlp):
 | 
				
			||||||
| 
						 | 
					@ -1169,18 +1188,19 @@ def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
 | 
				
			||||||
        # create artificial KB
 | 
					        # create artificial KB
 | 
				
			||||||
        mykb = InMemoryLookupKB(vocab, entity_vector_length=3)
 | 
					        mykb = InMemoryLookupKB(vocab, entity_vector_length=3)
 | 
				
			||||||
        mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3])
 | 
					        mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3])
 | 
				
			||||||
        mykb.add_alias(
 | 
					        mykb.add_alias(alias="Mahler", entities=[entity_id], probabilities=[1])
 | 
				
			||||||
            alias="Mahler",
 | 
					 | 
				
			||||||
            entities=[entity_id],
 | 
					 | 
				
			||||||
            probabilities=[1 if meet_threshold else 0.01],
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        return mykb
 | 
					        return mykb
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Create the Entity Linker component and add it to the pipeline
 | 
					    # Create the Entity Linker component and add it to the pipeline
 | 
				
			||||||
    entity_linker = nlp.add_pipe(
 | 
					    entity_linker = nlp.add_pipe(
 | 
				
			||||||
        "entity_linker",
 | 
					        "entity_linker",
 | 
				
			||||||
        last=True,
 | 
					        last=True,
 | 
				
			||||||
        config={"threshold": 0.99, "model": config},
 | 
					        config={
 | 
				
			||||||
 | 
					            "threshold": None if meet_threshold else 1.0,
 | 
				
			||||||
 | 
					            # Prior for candidate may be 1.0, rendering the our test setting with threshold 1.0 useless otherwise.
 | 
				
			||||||
 | 
					            "incl_prior": meet_threshold,
 | 
				
			||||||
 | 
					            "model": config,
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    entity_linker.set_kb(create_kb)  # type: ignore
 | 
					    entity_linker.set_kb(create_kb)  # type: ignore
 | 
				
			||||||
    nlp.initialize(get_examples=lambda: train_examples)
 | 
					    nlp.initialize(get_examples=lambda: train_examples)
 | 
				
			||||||
| 
						 | 
					@ -1191,7 +1211,7 @@ def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
 | 
				
			||||||
    doc = nlp(text)
 | 
					    doc = nlp(text)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    assert len(doc.ents) == 1
 | 
					    assert len(doc.ents) == 1
 | 
				
			||||||
    assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL
 | 
					    assert doc.ents[0].kb_id_ == (entity_id if meet_threshold else EntityLinker.NIL)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def test_span_maker_forward_with_empty():
 | 
					def test_span_maker_forward_with_empty():
 | 
				
			||||||
| 
						 | 
					@ -1207,3 +1227,62 @@ def test_span_maker_forward_with_empty():
 | 
				
			||||||
    # just to get a model
 | 
					    # just to get a model
 | 
				
			||||||
    span_maker = build_span_maker()
 | 
					    span_maker = build_span_maker()
 | 
				
			||||||
    span_maker([doc1, doc2], False)
 | 
					    span_maker([doc1, doc2], False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def test_nel_candidate_processing():
 | 
				
			||||||
 | 
					    """Test that NEL handles candidate streams correctly in a set of documents with & without entities as well as empty
 | 
				
			||||||
 | 
					    documents.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    train_data = [
 | 
				
			||||||
 | 
					        (
 | 
				
			||||||
 | 
					            "The sky is blue.",
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "sent_starts": [1, 0, 0, 0, 0],
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					        ),
 | 
				
			||||||
 | 
					        (
 | 
				
			||||||
 | 
					            "They visited New York.",
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "sent_starts": [1, 0, 0, 0, 0],
 | 
				
			||||||
 | 
					                "entities": [(13, 21, "GPE")],
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					        ),
 | 
				
			||||||
 | 
					        ("", {}),
 | 
				
			||||||
 | 
					        (
 | 
				
			||||||
 | 
					            "New York is a city.",
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "sent_starts": [1, 0, 0, 0, 0, 0],
 | 
				
			||||||
 | 
					                "entities": [(0, 8, "GPE")],
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					        ),
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    nlp = English()
 | 
				
			||||||
 | 
					    nlp.add_pipe("sentencizer")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    vector_length = 3
 | 
				
			||||||
 | 
					    train_examples = []
 | 
				
			||||||
 | 
					    for text, annotation in train_data:
 | 
				
			||||||
 | 
					        train_examples.append(Example.from_dict(nlp(text), annotation))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def create_kb(vocab):
 | 
				
			||||||
 | 
					        # create artificial KB
 | 
				
			||||||
 | 
					        mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
 | 
				
			||||||
 | 
					        mykb.add_entity(entity="Q60", freq=12, entity_vector=[1, 2, 3])
 | 
				
			||||||
 | 
					        mykb.add_alias("New York", ["Q60"], [0.9])
 | 
				
			||||||
 | 
					        return mykb
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Create and train the Entity Linker
 | 
				
			||||||
 | 
					    entity_linker = nlp.add_pipe("entity_linker", last=True)
 | 
				
			||||||
 | 
					    entity_linker.set_kb(create_kb)
 | 
				
			||||||
 | 
					    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
				
			||||||
 | 
					    for i in range(2):
 | 
				
			||||||
 | 
					        losses = {}
 | 
				
			||||||
 | 
					        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Add a custom rule-based component to mimick NER
 | 
				
			||||||
 | 
					    ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
 | 
				
			||||||
 | 
					    ruler.add_patterns([{"label": "GPE", "pattern": [{"LOWER": "new york"}]}])  # type: ignore
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # this will run the pipeline on the examples and shouldn't crash
 | 
				
			||||||
 | 
					    nlp.evaluate(train_examples)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -2,7 +2,9 @@ from typing import Callable, Protocol, Iterable, Iterator, Optional
 | 
				
			||||||
from typing import Union, Tuple, List, Dict, Any, overload
 | 
					from typing import Union, Tuple, List, Dict, Any, overload
 | 
				
			||||||
from cymem.cymem import Pool
 | 
					from cymem.cymem import Pool
 | 
				
			||||||
from thinc.types import Floats1d, Floats2d, Ints2d
 | 
					from thinc.types import Floats1d, Floats2d, Ints2d
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .span import Span
 | 
					from .span import Span
 | 
				
			||||||
 | 
					from .span_group import SpanGroup
 | 
				
			||||||
from .token import Token
 | 
					from .token import Token
 | 
				
			||||||
from ._dict_proxies import SpanGroups
 | 
					from ._dict_proxies import SpanGroups
 | 
				
			||||||
from ._retokenize import Retokenizer
 | 
					from ._retokenize import Retokenizer
 | 
				
			||||||
| 
						 | 
					@ -129,6 +131,7 @@ class Doc:
 | 
				
			||||||
        outside: Optional[List[Span]] = ...,
 | 
					        outside: Optional[List[Span]] = ...,
 | 
				
			||||||
        default: str = ...
 | 
					        default: str = ...
 | 
				
			||||||
    ) -> None: ...
 | 
					    ) -> None: ...
 | 
				
			||||||
 | 
					    ents_spangroup: SpanGroup
 | 
				
			||||||
    @property
 | 
					    @property
 | 
				
			||||||
    def noun_chunks(self) -> Iterator[Span]: ...
 | 
					    def noun_chunks(self) -> Iterator[Span]: ...
 | 
				
			||||||
    @property
 | 
					    @property
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -19,6 +19,8 @@ import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .span cimport Span
 | 
					from .span cimport Span
 | 
				
			||||||
from .token cimport MISSING_DEP
 | 
					from .token cimport MISSING_DEP
 | 
				
			||||||
 | 
					from .span_group cimport SpanGroup
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ._dict_proxies import SpanGroups
 | 
					from ._dict_proxies import SpanGroups
 | 
				
			||||||
from .token cimport Token
 | 
					from .token cimport Token
 | 
				
			||||||
from ..lexeme cimport Lexeme, EMPTY_LEXEME
 | 
					from ..lexeme cimport Lexeme, EMPTY_LEXEME
 | 
				
			||||||
| 
						 | 
					@ -701,6 +703,14 @@ cdef class Doc:
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        return self.text
 | 
					        return self.text
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def ents_spangroup(self) -> SpanGroup:
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Returns entities (in `.ents`) as `SpanGroup`.
 | 
				
			||||||
 | 
					        RETURNS (SpanGroup): All entities (in `.ents`) as `SpanGroup`.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        return SpanGroup(self, spans=self.ents, name="ents")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    property ents:
 | 
					    property ents:
 | 
				
			||||||
        """The named entities in the document. Returns a tuple of named entity
 | 
					        """The named entities in the document. Returns a tuple of named entity
 | 
				
			||||||
        `Span` objects, if the entity recognizer has been applied.
 | 
					        `Span` objects, if the entity recognizer has been applied.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user