Fix tokvecs flattening in pipeline

This commit is contained in:
Matthew Honnibal 2017-05-21 09:05:34 -05:00
parent 0731971bfc
commit 180e5afede

View File

@ -105,16 +105,19 @@ class NeuralTagger(object):
def pipe(self, stream, batch_size=128, n_threads=-1):
for docs in cytoolz.partition_all(batch_size, stream):
tokvecs = self.model.ops.flatten([d.tensor for d in docs])
tokvecs = [d.tensor for d in docs]
tag_ids = self.predict(tokvecs)
self.set_annotations(docs, tag_ids)
yield from docs
def predict(self, tokvecs):
scores = self.model(tokvecs)
scores = self.model.ops.flatten(scores)
guesses = scores.argmax(axis=1)
if not isinstance(guesses, numpy.ndarray):
guesses = guesses.get()
guesses = self.model.ops.unflatten(guesses,
[tv.shape[0] for tv in tokvecs])
return guesses
def set_annotations(self, docs, batch_tag_ids):
@ -122,10 +125,9 @@ class NeuralTagger(object):
docs = [docs]
cdef Doc doc
cdef int idx = 0
cdef int i, j, tag_id
cdef Vocab vocab = self.vocab
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[idx:idx+len(doc)]
doc_tag_ids = batch_tag_ids[i]
for j, tag_id in enumerate(doc_tag_ids):
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
idx += 1