diff --git a/spacy/syntax/iterators.pyx b/spacy/syntax/iterators.pyx index 653c89d8f..516c2e41b 100644 --- a/spacy/syntax/iterators.pyx +++ b/spacy/syntax/iterators.pyx @@ -32,7 +32,10 @@ def german_noun_chunks(doc): np_deps = set(doc.vocab.strings[label] for label in labels) close_app = doc.vocab.strings['nk'] - for word in doc: + rbracket = 0 + for i, word in enumerate(doc): + if i < rbracket: + continue if word.pos == NOUN and word.dep in np_deps: rbracket = word.i+1 # try to extend the span to the right diff --git a/spacy/syntax/parser.pyx b/spacy/syntax/parser.pyx index 04f9d5f22..22f37127a 100644 --- a/spacy/syntax/parser.pyx +++ b/spacy/syntax/parser.pyx @@ -225,6 +225,11 @@ cdef class Parser: def step_through(self, Doc doc): return StepwiseState(self, doc) + def from_transition_sequence(self, Doc doc, sequence): + with self.step_through(doc) as stepwise: + for transition in sequence: + stepwise.transition(transition) + def add_label(self, label): for action in self.moves.action_types: self.moves.add_action(action, label) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index 83a39a03a..cc64ee46f 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -1,17 +1,15 @@ -from spacy.en import English - import pytest import os +import spacy @pytest.fixture(scope="session") def EN(): - if os.environ.get('SPACY_DATA'): - data_dir = os.environ.get('SPACY_DATA') - else: - data_dir = None - print("Load EN from %s" % data_dir) - return English(data_dir=data_dir) + return spacy.load("en") + +@pytest.fixture(scope="session") +def DE(): + return spacy.load("de") def pytest_addoption(parser): diff --git a/spacy/tests/integration/__init__.py b/spacy/tests/integration/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/integration/test_model_sanity.py b/spacy/tests/integration/test_model_sanity.py new file mode 100644 index 000000000..0cddb85dd --- /dev/null +++ b/spacy/tests/integration/test_model_sanity.py @@ -0,0 +1,62 @@ +# -*- coding: utf-8 -*- + +import pytest +import numpy + +@pytest.mark.models +class TestModelSanity: + """ + This is to make sure the model works as expected. The tests make sure that values are properly set. + Tests are not meant to evaluate the content of the output, only make sure the output is formally okay. + """ + + @pytest.fixture(scope='class', params=['en','de']) + def example(self, request, EN, DE): + if request.param == 'en': + return EN(u'There was a stranger standing at the big street talking to herself.') + elif request.param == 'de': + return DE(u'An der großen Straße stand eine merkwürdige Gestalt und führte Selbstgespräche.') + + def test_tokenization(self, example): + # tokenization should split the document into tokens + assert len(example) > 1 + + def test_tagging(self, example): + # if tagging was done properly, pos tags shouldn't be empty + assert example.is_tagged + assert all( t.pos != 0 for t in example ) + assert all( t.tag != 0 for t in example ) + + def test_parsing(self, example): + # if parsing was done properly + # - dependency labels shouldn't be empty + # - the head of some tokens should not be root + assert example.is_parsed + assert all( t.dep != 0 for t in example ) + assert any( t.dep != i for i,t in enumerate(example) ) + + def test_ner(self, example): + # if ner was done properly, ent_iob shouldn't be empty + assert all( t.ent_iob != 0 for t in example ) + + def test_vectors(self, example): + # if vectors are available, they should differ on different words + # this isn't a perfect test since this could in principle fail in a sane model as well, + # but that's very unlikely and a good indicator if something is wrong + vector0 = example[0].vector + vector1 = example[1].vector + vector2 = example[2].vector + assert not numpy.array_equal(vector0,vector1) + assert not numpy.array_equal(vector0,vector2) + assert not numpy.array_equal(vector1,vector2) + + def test_probs(self, example): + # if frequencies/probabilities are okay, they should differ for different words + # this isn't a perfect test since this could in principle fail in a sane model as well, + # but that's very unlikely and a good indicator if something is wrong + prob0 = example[0].prob + prob1 = example[1].prob + prob2 = example[2].prob + assert not prob0 == prob1 + assert not prob0 == prob2 + assert not prob1 == prob2 diff --git a/spacy/tests/parser/test_base_nps.py b/spacy/tests/parser/test_base_nps.py index 8d308bc8d..b598158d0 100644 --- a/spacy/tests/parser/test_base_nps.py +++ b/spacy/tests/parser/test_base_nps.py @@ -2,30 +2,30 @@ from __future__ import unicode_literals import pytest -@pytest.mark.models -def test_nsubj(EN): - sent = EN(u'A base phrase should be recognized.') - base_nps = list(sent.noun_chunks) - assert len(base_nps) == 1 - assert base_nps[0].string == 'A base phrase ' +# @pytest.mark.models +# def test_nsubj(EN): +# sent = EN(u'A base phrase should be recognized.') +# base_nps = list(sent.noun_chunks) +# assert len(base_nps) == 1 +# assert base_nps[0].string == 'A base phrase ' -@pytest.mark.models -def test_coord(EN): - sent = EN(u'A base phrase and a good phrase are often the same.') - base_nps = list(sent.noun_chunks) - assert len(base_nps) == 2 - assert base_nps[0].string == 'A base phrase ' - assert base_nps[1].string == 'a good phrase ' +# @pytest.mark.models +# def test_coord(EN): +# sent = EN(u'A base phrase and a good phrase are often the same.') +# base_nps = list(sent.noun_chunks) +# assert len(base_nps) == 2 +# assert base_nps[0].string == 'A base phrase ' +# assert base_nps[1].string == 'a good phrase ' -@pytest.mark.models -def test_pp(EN): - sent = EN(u'A phrase with another phrase occurs') - base_nps = list(sent.noun_chunks) - assert len(base_nps) == 2 - assert base_nps[0].string == 'A phrase ' - assert base_nps[1].string == 'another phrase ' +# @pytest.mark.models +# def test_pp(EN): +# sent = EN(u'A phrase with another phrase occurs') +# base_nps = list(sent.noun_chunks) +# assert len(base_nps) == 2 +# assert base_nps[0].string == 'A phrase ' +# assert base_nps[1].string == 'another phrase ' @pytest.mark.models diff --git a/spacy/tests/unit/__init__.py b/spacy/tests/unit/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/unit/test_parser.py b/spacy/tests/unit/test_parser.py new file mode 100644 index 000000000..78bfad293 --- /dev/null +++ b/spacy/tests/unit/test_parser.py @@ -0,0 +1,138 @@ +# -*- coding: utf-8 -*- + +from __future__ import unicode_literals + +import pytest +import numpy + +from spacy.attrs import HEAD, DEP + + +@pytest.mark.models +class TestNounChunks: + @pytest.fixture(scope="class") + def ex1_en(self, EN): + example = EN.tokenizer.tokens_from_list('A base phrase should be recognized .'.split(' ')) + EN.tagger.tag_from_strings(example, 'DT NN NN MD VB VBN .'.split(' ')) + det,compound,nsubjpass,aux,auxpass,root,punct = tuple( EN.vocab.strings[l] for l in ['det','compound','nsubjpass','aux','auxpass','root','punct'] ) + example.from_array([HEAD, DEP], + numpy.asarray( + [ + [2, det], + [1, compound], + [3, nsubjpass], + [2, aux], + [1, auxpass], + [0, root], + [-1, punct] + ], dtype='int32')) + return example + + @pytest.fixture(scope="class") + def ex2_en(self, EN): + example = EN.tokenizer.tokens_from_list('A base phrase and a good phrase are often the same .'.split(' ')) + EN.tagger.tag_from_strings(example, 'DT NN NN CC DT JJ NN VBP RB DT JJ .'.split(' ')) + det,compound,nsubj,cc,amod,conj,root,advmod,attr,punct = tuple( EN.vocab.strings[l] for l in ['det','compound','nsubj','cc','amod','conj','root','advmod','attr','punct'] ) + example.from_array([HEAD, DEP], + numpy.asarray( + [ + [2, det], + [1, compound], + [5, nsubj], + [-1, cc], + [1, det], + [1, amod], + [-4, conj], + [0, root], + [-1, advmod], + [1, det], + [-3, attr], + [-4, punct] + ], dtype='int32')) + return example + + @pytest.fixture(scope="class") + def ex3_en(self, EN): + example = EN.tokenizer.tokens_from_list('A phrase with another phrase occurs .'.split(' ')) + EN.tagger.tag_from_strings(example, 'DT NN IN DT NN VBZ .'.split(' ')) + det,nsubj,prep,pobj,root,punct = tuple( EN.vocab.strings[l] for l in ['det','nsubj','prep','pobj','root','punct'] ) + example.from_array([HEAD, DEP], + numpy.asarray( + [ + [1, det], + [4, nsubj], + [-1, prep], + [1, det], + [-2, pobj], + [0, root], + [-1, punct] + ], dtype='int32')) + return example + + @pytest.fixture(scope="class") + def ex1_de(self, DE): + example = DE.tokenizer.tokens_from_list('Eine Tasse steht auf dem Tisch .'.split(' ')) + DE.tagger.tag_from_strings(example, 'ART NN VVFIN APPR ART NN $.'.split(' ')) + nk,sb,root,mo,punct = tuple( DE.vocab.strings[l] for l in ['nk','sb','root','mo','punct']) + example.from_array([HEAD, DEP], + numpy.asarray( + [ + [1, nk], + [1, sb], + [0, root], + [-1, mo], + [1, nk], + [-2, nk], + [-3, punct] + ], dtype='int32')) + return example + + @pytest.fixture(scope="class") + def ex2_de(self, DE): + example = DE.tokenizer.tokens_from_list('Die Sängerin singt mit einer Tasse Kaffee Arien .'.split(' ')) + DE.tagger.tag_from_strings(example, 'ART NN VVFIN APPR ART NN NN NN $.'.split(' ')) + nk,sb,root,mo,punct,oa = tuple( DE.vocab.strings[l] for l in ['nk','sb','root','mo','punct','oa']) + example.from_array([HEAD, DEP], + numpy.asarray( + [ + [1, nk], + [1, sb], + [0, root], + [-1, mo], + [1, nk], + [-2, nk], + [-1, nk], + [-5, oa], + [-6, punct] + ], dtype='int32')) + return example + + def test_en_standard_chunk(self, ex1_en): + chunks = list(ex1_en.noun_chunks) + assert len(chunks) == 1 + assert chunks[0].string == 'A base phrase ' + + def test_en_coordinated_chunks(self, ex2_en): + chunks = list(ex2_en.noun_chunks) + assert len(chunks) == 2 + assert chunks[0].string == 'A base phrase ' + assert chunks[1].string == 'a good phrase ' + + def test_en_pp_chunks(self, ex3_en): + chunks = list(ex3_en.noun_chunks) + assert len(chunks) == 2 + assert chunks[0].string == 'A phrase ' + assert chunks[1].string == 'another phrase ' + + def test_de_standard_chunk(self, ex1_de): + chunks = list(ex1_de.noun_chunks) + assert len(chunks) == 2 + assert chunks[0].string == 'Eine Tasse ' + assert chunks[1].string == 'dem Tisch ' + + def test_de_extended_chunk(self, ex2_de): + chunks = list(ex2_de.noun_chunks) + assert len(chunks) == 3 + assert chunks[0].string == 'Die Sängerin ' + assert chunks[1].string == 'einer Tasse Kaffee ' + assert chunks[2].string == 'Arien '