Implement AddHistory layer wrapper

This commit is contained in:
Matthew Honnibal 2017-09-14 19:07:35 +02:00
parent d4ca6cef9e
commit 18347ab69c

View File

@ -78,6 +78,37 @@ def add_tuples(X, drop=0.):
return (vals1+vals2, length), add_tuples_bwd
def AddHistory(layer, decay=0.0001):
ops = layer.ops
nonlocals = []
if layer.nI:
average_inputs = ops.allocate((layer.nO, layer.nI-layer.nO))
nonlocals = []
def history_fwd(X, drop=0.):
if not nonlocals:
nonlocals.append(ops.allocate((layer.nO, X.shape[1])))
model.history = nonlocals[0]
average_inputs = nonlocals[0]
hist = ops.xp.tensordot(X, average_inputs, axes=[[1], [1]])
X_hist = ops.xp.hstack((X, hist))
Y, bp_Y = layer.begin_update(X_hist, drop=drop)
for i in range(Y.shape[0]):
amax = Y[i].argmax()
average_inputs[amax] *= 1-decay
average_inputs[amax] += decay * X[i]
def history_bwd(dY, sgd=None):
dX_hist = bp_Y(dY, sgd=sgd)
dX = dX_hist[:, :X.shape[1]]
return dX
return Y, history_bwd
model = wrap(history_fwd, layer)
if layer.nI:
model.history = average_inputs
else:
model.history = None
return model
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)