mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-11 17:10:36 +03:00
Remove beam test
This commit is contained in:
parent
9db66ddd48
commit
192b94f0a1
|
@ -1,100 +0,0 @@
|
||||||
import pytest
|
|
||||||
import numpy
|
|
||||||
from spacy.vocab import Vocab
|
|
||||||
from spacy.language import Language
|
|
||||||
from spacy.pipeline.defaults import default_parser
|
|
||||||
from spacy.pipeline import DependencyParser
|
|
||||||
from spacy.syntax.arc_eager import ArcEager
|
|
||||||
from spacy.tokens import Doc
|
|
||||||
from spacy.syntax.stateclass import StateClass
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def vocab():
|
|
||||||
return Vocab()
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def moves(vocab):
|
|
||||||
aeager = ArcEager(vocab.strings, {})
|
|
||||||
aeager.add_action(2, "nsubj")
|
|
||||||
aeager.add_action(3, "dobj")
|
|
||||||
aeager.add_action(2, "aux")
|
|
||||||
return aeager
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def docs(vocab):
|
|
||||||
return [Doc(vocab, words=["Rats", "bite", "things"])]
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def states(docs):
|
|
||||||
return [StateClass(doc) for doc in docs]
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def tokvecs(docs, vector_size):
|
|
||||||
output = []
|
|
||||||
for doc in docs:
|
|
||||||
vec = numpy.random.uniform(-0.1, 0.1, (len(doc), vector_size))
|
|
||||||
output.append(numpy.asarray(vec))
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def batch_size(docs):
|
|
||||||
return len(docs)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def beam_width():
|
|
||||||
return 4
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def vector_size():
|
|
||||||
return 6
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def beam(moves, states, golds, beam_width):
|
|
||||||
return ParserBeam(moves, states, golds, width=beam_width, density=0.0)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def scores(moves, batch_size, beam_width):
|
|
||||||
return [
|
|
||||||
numpy.asarray(
|
|
||||||
numpy.random.uniform(-0.1, 0.1, (batch_size, moves.n_moves)), dtype="f"
|
|
||||||
)
|
|
||||||
for _ in range(batch_size)
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
# All tests below are skipped after removing Beam stuff during the Example/GoldParse refactor
|
|
||||||
@pytest.mark.skip
|
|
||||||
def test_create_beam(beam):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip
|
|
||||||
def test_beam_advance(beam, scores):
|
|
||||||
beam.advance(scores)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip
|
|
||||||
def test_beam_advance_too_few_scores(beam, scores):
|
|
||||||
with pytest.raises(IndexError):
|
|
||||||
beam.advance(scores[:-1])
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip
|
|
||||||
def test_beam_parse():
|
|
||||||
nlp = Language()
|
|
||||||
config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
|
|
||||||
nlp.add_pipe(DependencyParser(nlp.vocab, default_parser(), **config), name="parser")
|
|
||||||
nlp.parser.add_label("nsubj")
|
|
||||||
nlp.parser.begin_training([], token_vector_width=8, hidden_width=8)
|
|
||||||
doc = nlp.make_doc("Australia is a country")
|
|
||||||
nlp.parser(doc, beam_width=2)
|
|
Loading…
Reference in New Issue
Block a user