Add basic span predictor tests

This commit is contained in:
Paul O'Leary McCann 2022-07-03 15:13:15 +09:00
parent 201731df2d
commit 1a4dbb702d

View File

@ -0,0 +1,129 @@
import pytest
import spacy
from spacy import util
from spacy.training import Example
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
from spacy.ml.models.coref_util import (
DEFAULT_CLUSTER_PREFIX,
select_non_crossing_spans,
get_sentence_ids,
spans2ints,
)
from thinc.util import has_torch
# fmt: off
TRAIN_DATA = [
(
"John Smith picked up the red ball and he threw it away.",
{
"spans": {
f"{DEFAULT_CLUSTER_PREFIX}_1": [
(0, 11, "MENTION"), # John Smith
(38, 41, "MENTION"), # he
],
f"{DEFAULT_CLUSTER_PREFIX}_2": [
(25, 33, "MENTION"), # red ball
(47, 50, "MENTION"), # it
],
f"coref_head_clusters_1": [
(5, 11, "MENTION"), # Smith
(38, 41, "MENTION"), # he
],
f"coref_head_clusters_2": [
(29, 33, "MENTION"), # red ball
(47, 50, "MENTION"), # it
]
}
},
),
]
# fmt: on
@pytest.fixture
def nlp():
return English()
@pytest.fixture
def snlp():
en = English()
en.add_pipe("sentencizer")
return en
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_add_pipe(nlp):
nlp.add_pipe("span_predictor")
assert nlp.pipe_names == ["span_predictor"]
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_not_initialized(nlp):
nlp.add_pipe("span_predictor")
text = "She gave me her pen."
with pytest.raises(ValueError, match="E109"):
nlp(text)
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_span_predictor_serialization(nlp):
# Test that the span predictor component can be serialized
nlp.add_pipe("span_predictor", last=True)
nlp.initialize()
assert nlp.pipe_names == ["span_predictor"]
text = "She gave me her pen."
doc = nlp(text)
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = spacy.load(tmp_dir)
assert nlp2.pipe_names == ["span_predictor"]
doc2 = nlp2(text)
assert spans2ints(doc) == spans2ints(doc2)
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_overfitting_IO(nlp):
# Simple test to try and quickly overfit - ensuring the ML models work correctly
train_examples = []
for text, annot in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
nlp.add_pipe("span_predictor")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
# Needs ~12 epochs to converge
for i in range(15):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
doc = nlp(test_text)
# test the trained model
doc = nlp(test_text)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
test_text,
"I noticed many friends around me",
"They received it. They received the SMS.",
]
docs1 = list(nlp.pipe(texts))
docs2 = list(nlp.pipe(texts))
docs3 = [nlp(text) for text in texts]
assert spans2ints(docs1[0]) == spans2ints(docs2[0])
assert spans2ints(docs1[0]) == spans2ints(docs3[0])