mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-18 04:02:20 +03:00
Merge branch 'fix/coref-alignment' into feature/coref
This commit is contained in:
commit
1b3db149df
|
@ -934,6 +934,7 @@ class Errors(metaclass=ErrorsWithCodes):
|
||||||
E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}")
|
E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}")
|
||||||
E1042 = ("Function was called with `{arg1}`={arg1_values} and "
|
E1042 = ("Function was called with `{arg1}`={arg1_values} and "
|
||||||
"`{arg2}`={arg2_values} but these arguments are conflicting.")
|
"`{arg2}`={arg2_values} but these arguments are conflicting.")
|
||||||
|
E1043 = ("Misalignment in coref. Head token has no match in training doc.")
|
||||||
|
|
||||||
|
|
||||||
# Deprecated model shortcuts, only used in errors and warnings
|
# Deprecated model shortcuts, only used in errors and warnings
|
||||||
|
|
|
@ -143,16 +143,18 @@ def create_head_span_idxs(ops, doclen: int):
|
||||||
|
|
||||||
|
|
||||||
def get_clusters_from_doc(doc) -> List[List[Tuple[int, int]]]:
|
def get_clusters_from_doc(doc) -> List[List[Tuple[int, int]]]:
|
||||||
"""Given a Doc, convert the cluster spans to simple int tuple lists."""
|
"""Convert the span clusters in a Doc to simple integer tuple lists. The
|
||||||
|
ints are char spans, to be tokenization independent.
|
||||||
|
"""
|
||||||
out = []
|
out = []
|
||||||
for key, val in doc.spans.items():
|
for key, val in doc.spans.items():
|
||||||
cluster = []
|
cluster = []
|
||||||
for span in val:
|
for span in val:
|
||||||
# TODO check that there isn't an off-by-one error here
|
|
||||||
# cluster.append((span.start, span.end))
|
|
||||||
# TODO This conversion should be happening earlier in processing
|
|
||||||
head_i = span.root.i
|
head_i = span.root.i
|
||||||
cluster.append((head_i, head_i + 1))
|
head = doc[head_i]
|
||||||
|
char_span = (head.idx, head.idx + len(head))
|
||||||
|
cluster.append(char_span)
|
||||||
|
|
||||||
# don't want duplicates
|
# don't want duplicates
|
||||||
cluster = list(set(cluster))
|
cluster = list(set(cluster))
|
||||||
|
|
|
@ -221,6 +221,13 @@ class CoreferenceResolver(TrainablePipe):
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
|
|
||||||
for eg in examples:
|
for eg in examples:
|
||||||
|
if eg.x.text != eg.y.text:
|
||||||
|
# TODO assign error number
|
||||||
|
raise ValueError(
|
||||||
|
"""Text, including whitespace, must match between reference and
|
||||||
|
predicted docs in coref training.
|
||||||
|
"""
|
||||||
|
)
|
||||||
preds, backprop = self.model.begin_update([eg.predicted])
|
preds, backprop = self.model.begin_update([eg.predicted])
|
||||||
score_matrix, mention_idx = preds
|
score_matrix, mention_idx = preds
|
||||||
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
|
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
|
||||||
|
@ -273,7 +280,19 @@ class CoreferenceResolver(TrainablePipe):
|
||||||
example = list(examples)[0]
|
example = list(examples)[0]
|
||||||
cidx = mention_idx
|
cidx = mention_idx
|
||||||
|
|
||||||
clusters = get_clusters_from_doc(example.reference)
|
clusters_by_char = get_clusters_from_doc(example.reference)
|
||||||
|
# convert to token clusters, and give up if necessary
|
||||||
|
clusters = []
|
||||||
|
for cluster in clusters_by_char:
|
||||||
|
cc = []
|
||||||
|
for start_char, end_char in cluster:
|
||||||
|
span = example.predicted.char_span(start_char, end_char)
|
||||||
|
if span is None:
|
||||||
|
# TODO log more details
|
||||||
|
raise IndexError(Errors.E1043)
|
||||||
|
cc.append((span.start, span.end))
|
||||||
|
clusters.append(cc)
|
||||||
|
|
||||||
span_idxs = create_head_span_idxs(ops, len(example.predicted))
|
span_idxs = create_head_span_idxs(ops, len(example.predicted))
|
||||||
gscores = create_gold_scores(span_idxs, clusters)
|
gscores = create_gold_scores(span_idxs, clusters)
|
||||||
# Note on type here. This is bools but asarray2f wants ints.
|
# Note on type here. This is bools but asarray2f wants ints.
|
||||||
|
|
|
@ -204,6 +204,13 @@ class SpanPredictor(TrainablePipe):
|
||||||
|
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
for eg in examples:
|
for eg in examples:
|
||||||
|
if eg.x.text != eg.y.text:
|
||||||
|
# TODO assign error number
|
||||||
|
raise ValueError(
|
||||||
|
"""Text, including whitespace, must match between reference and
|
||||||
|
predicted docs in span predictor training.
|
||||||
|
"""
|
||||||
|
)
|
||||||
span_scores, backprop = self.model.begin_update([eg.predicted])
|
span_scores, backprop = self.model.begin_update([eg.predicted])
|
||||||
# FIXME, this only happens once in the first 1000 docs of OntoNotes
|
# FIXME, this only happens once in the first 1000 docs of OntoNotes
|
||||||
# and I'm not sure yet why.
|
# and I'm not sure yet why.
|
||||||
|
@ -266,16 +273,29 @@ class SpanPredictor(TrainablePipe):
|
||||||
for eg in examples:
|
for eg in examples:
|
||||||
starts = []
|
starts = []
|
||||||
ends = []
|
ends = []
|
||||||
|
keeps = []
|
||||||
|
sidx = 0
|
||||||
for key, sg in eg.reference.spans.items():
|
for key, sg in eg.reference.spans.items():
|
||||||
if key.startswith(self.output_prefix):
|
if key.startswith(self.output_prefix):
|
||||||
for mention in sg:
|
for ii, mention in enumerate(sg):
|
||||||
starts.append(mention.start)
|
sidx += 1
|
||||||
ends.append(mention.end)
|
# convert to span in pred
|
||||||
|
sch, ech = (mention.start_char, mention.end_char)
|
||||||
|
span = eg.predicted.char_span(sch, ech)
|
||||||
|
# TODO add to errors.py
|
||||||
|
if span is None:
|
||||||
|
warnings.warn("Could not align gold span in span predictor, skipping")
|
||||||
|
continue
|
||||||
|
starts.append(span.start)
|
||||||
|
ends.append(span.end)
|
||||||
|
keeps.append(sidx - 1)
|
||||||
|
|
||||||
starts = self.model.ops.xp.asarray(starts)
|
starts = self.model.ops.xp.asarray(starts)
|
||||||
ends = self.model.ops.xp.asarray(ends)
|
ends = self.model.ops.xp.asarray(ends)
|
||||||
start_scores = span_scores[:, :, 0]
|
start_scores = span_scores[:, :, 0][keeps]
|
||||||
end_scores = span_scores[:, :, 1]
|
end_scores = span_scores[:, :, 1][keeps]
|
||||||
|
|
||||||
|
|
||||||
n_classes = start_scores.shape[1]
|
n_classes = start_scores.shape[1]
|
||||||
start_probs = ops.softmax(start_scores, axis=1)
|
start_probs = ops.softmax(start_scores, axis=1)
|
||||||
end_probs = ops.softmax(end_scores, axis=1)
|
end_probs = ops.softmax(end_scores, axis=1)
|
||||||
|
@ -283,7 +303,14 @@ class SpanPredictor(TrainablePipe):
|
||||||
end_targets = to_categorical(ends, n_classes)
|
end_targets = to_categorical(ends, n_classes)
|
||||||
start_grads = start_probs - start_targets
|
start_grads = start_probs - start_targets
|
||||||
end_grads = end_probs - end_targets
|
end_grads = end_probs - end_targets
|
||||||
grads = ops.xp.stack((start_grads, end_grads), axis=2)
|
# now return to original shape, with 0s
|
||||||
|
final_start_grads = ops.alloc2f(*span_scores[:, :, 0].shape)
|
||||||
|
final_start_grads[keeps] = start_grads
|
||||||
|
final_end_grads = ops.alloc2f(*final_start_grads.shape)
|
||||||
|
final_end_grads[keeps] = end_grads
|
||||||
|
# XXX Note this only works with fake batching
|
||||||
|
grads = ops.xp.stack((final_start_grads, final_end_grads), axis=2)
|
||||||
|
|
||||||
loss = float((grads**2).sum())
|
loss = float((grads**2).sum())
|
||||||
return loss, grads
|
return loss, grads
|
||||||
|
|
||||||
|
@ -311,6 +338,7 @@ class SpanPredictor(TrainablePipe):
|
||||||
if not ex.predicted.spans:
|
if not ex.predicted.spans:
|
||||||
# set placeholder for shape inference
|
# set placeholder for shape inference
|
||||||
doc = ex.predicted
|
doc = ex.predicted
|
||||||
|
# TODO should be able to check if there are some valid docs in the batch
|
||||||
assert len(doc) > 2, "Coreference requires at least two tokens"
|
assert len(doc) > 2, "Coreference requires at least two tokens"
|
||||||
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
|
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
|
||||||
X.append(ex.predicted)
|
X.append(ex.predicted)
|
||||||
|
|
|
@ -9,6 +9,7 @@ from spacy.ml.models.coref_util import (
|
||||||
DEFAULT_CLUSTER_PREFIX,
|
DEFAULT_CLUSTER_PREFIX,
|
||||||
select_non_crossing_spans,
|
select_non_crossing_spans,
|
||||||
get_sentence_ids,
|
get_sentence_ids,
|
||||||
|
get_clusters_from_doc,
|
||||||
)
|
)
|
||||||
|
|
||||||
from thinc.util import has_torch
|
from thinc.util import has_torch
|
||||||
|
@ -35,6 +36,9 @@ TRAIN_DATA = [
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
|
|
||||||
|
CONFIG = {"model": {"@architectures": "spacy.Coref.v1", "tok2vec_size": 64}}
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def nlp():
|
def nlp():
|
||||||
return English()
|
return English()
|
||||||
|
@ -60,9 +64,10 @@ def test_not_initialized(nlp):
|
||||||
with pytest.raises(ValueError, match="E109"):
|
with pytest.raises(ValueError, match="E109"):
|
||||||
nlp(text)
|
nlp(text)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
def test_initialized(nlp):
|
def test_initialized(nlp):
|
||||||
nlp.add_pipe("coref")
|
nlp.add_pipe("coref", config=CONFIG)
|
||||||
nlp.initialize()
|
nlp.initialize()
|
||||||
assert nlp.pipe_names == ["coref"]
|
assert nlp.pipe_names == ["coref"]
|
||||||
text = "She gave me her pen."
|
text = "She gave me her pen."
|
||||||
|
@ -74,7 +79,7 @@ def test_initialized(nlp):
|
||||||
|
|
||||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
def test_initialized_short(nlp):
|
def test_initialized_short(nlp):
|
||||||
nlp.add_pipe("coref")
|
nlp.add_pipe("coref", config=CONFIG)
|
||||||
nlp.initialize()
|
nlp.initialize()
|
||||||
assert nlp.pipe_names == ["coref"]
|
assert nlp.pipe_names == ["coref"]
|
||||||
text = "Hi there"
|
text = "Hi there"
|
||||||
|
@ -84,58 +89,47 @@ def test_initialized_short(nlp):
|
||||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
def test_coref_serialization(nlp):
|
def test_coref_serialization(nlp):
|
||||||
# Test that the coref component can be serialized
|
# Test that the coref component can be serialized
|
||||||
nlp.add_pipe("coref", last=True)
|
nlp.add_pipe("coref", last=True, config=CONFIG)
|
||||||
nlp.initialize()
|
nlp.initialize()
|
||||||
assert nlp.pipe_names == ["coref"]
|
assert nlp.pipe_names == ["coref"]
|
||||||
text = "She gave me her pen."
|
text = "She gave me her pen."
|
||||||
doc = nlp(text)
|
doc = nlp(text)
|
||||||
spans_result = doc.spans
|
|
||||||
|
|
||||||
with make_tempdir() as tmp_dir:
|
with make_tempdir() as tmp_dir:
|
||||||
nlp.to_disk(tmp_dir)
|
nlp.to_disk(tmp_dir)
|
||||||
nlp2 = spacy.load(tmp_dir)
|
nlp2 = spacy.load(tmp_dir)
|
||||||
assert nlp2.pipe_names == ["coref"]
|
assert nlp2.pipe_names == ["coref"]
|
||||||
doc2 = nlp2(text)
|
doc2 = nlp2(text)
|
||||||
spans_result2 = doc2.spans
|
|
||||||
print(1, [(k, len(v)) for k, v in spans_result.items()])
|
assert get_clusters_from_doc(doc) == get_clusters_from_doc(doc2)
|
||||||
print(2, [(k, len(v)) for k, v in spans_result2.items()])
|
|
||||||
# Note: spans do not compare equal because docs are different and docs
|
|
||||||
# use object identity for equality
|
|
||||||
for k, v in spans_result.items():
|
|
||||||
assert str(spans_result[k]) == str(spans_result2[k])
|
|
||||||
# assert spans_result == spans_result2
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
def test_overfitting_IO(nlp):
|
def test_overfitting_IO(nlp):
|
||||||
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
|
# Simple test to try and quickly overfit - ensuring the ML models work correctly
|
||||||
train_examples = []
|
train_examples = []
|
||||||
for text, annot in TRAIN_DATA:
|
for text, annot in TRAIN_DATA:
|
||||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
|
||||||
|
|
||||||
nlp.add_pipe("coref")
|
nlp.add_pipe("coref", config=CONFIG)
|
||||||
optimizer = nlp.initialize()
|
optimizer = nlp.initialize()
|
||||||
test_text = TRAIN_DATA[0][0]
|
test_text = TRAIN_DATA[0][0]
|
||||||
doc = nlp(test_text)
|
doc = nlp(test_text)
|
||||||
print("BEFORE", doc.spans)
|
|
||||||
|
|
||||||
for i in range(5):
|
# Needs ~12 epochs to converge
|
||||||
|
for i in range(15):
|
||||||
losses = {}
|
losses = {}
|
||||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
doc = nlp(test_text)
|
doc = nlp(test_text)
|
||||||
print(i, doc.spans)
|
|
||||||
print(losses["coref"]) # < 0.001
|
|
||||||
|
|
||||||
# test the trained model
|
# test the trained model
|
||||||
doc = nlp(test_text)
|
doc = nlp(test_text)
|
||||||
print("AFTER", doc.spans)
|
|
||||||
|
|
||||||
# Also test the results are still the same after IO
|
# Also test the results are still the same after IO
|
||||||
with make_tempdir() as tmp_dir:
|
with make_tempdir() as tmp_dir:
|
||||||
nlp.to_disk(tmp_dir)
|
nlp.to_disk(tmp_dir)
|
||||||
nlp2 = util.load_model_from_path(tmp_dir)
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
doc2 = nlp2(test_text)
|
doc2 = nlp2(test_text)
|
||||||
print("doc2", doc2.spans)
|
|
||||||
|
|
||||||
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
||||||
texts = [
|
texts = [
|
||||||
|
@ -143,14 +137,67 @@ def test_overfitting_IO(nlp):
|
||||||
"I noticed many friends around me",
|
"I noticed many friends around me",
|
||||||
"They received it. They received the SMS.",
|
"They received it. They received the SMS.",
|
||||||
]
|
]
|
||||||
batch_deps_1 = [doc.spans for doc in nlp.pipe(texts)]
|
docs1 = list(nlp.pipe(texts))
|
||||||
print(batch_deps_1)
|
docs2 = list(nlp.pipe(texts))
|
||||||
batch_deps_2 = [doc.spans for doc in nlp.pipe(texts)]
|
docs3 = [nlp(text) for text in texts]
|
||||||
print(batch_deps_2)
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
|
||||||
no_batch_deps = [doc.spans for doc in [nlp(text) for text in texts]]
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
|
||||||
print(no_batch_deps)
|
|
||||||
# assert_equal(batch_deps_1, batch_deps_2)
|
|
||||||
# assert_equal(batch_deps_1, no_batch_deps)
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_tokenization_mismatch(nlp):
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
eg = Example.from_dict(nlp.make_doc(text), annot)
|
||||||
|
ref = eg.reference
|
||||||
|
char_spans = {}
|
||||||
|
for key, cluster in ref.spans.items():
|
||||||
|
char_spans[key] = []
|
||||||
|
for span in cluster:
|
||||||
|
char_spans[key].append((span[0].idx, span[-1].idx + len(span[-1])))
|
||||||
|
with ref.retokenize() as retokenizer:
|
||||||
|
# merge "many friends"
|
||||||
|
retokenizer.merge(ref[5:7])
|
||||||
|
|
||||||
|
# Note this works because it's the same doc and we know the keys
|
||||||
|
for key, _ in ref.spans.items():
|
||||||
|
spans = char_spans[key]
|
||||||
|
ref.spans[key] = [ref.char_span(*span) for span in spans]
|
||||||
|
|
||||||
|
train_examples.append(eg)
|
||||||
|
|
||||||
|
nlp.add_pipe("coref", config=CONFIG)
|
||||||
|
optimizer = nlp.initialize()
|
||||||
|
test_text = TRAIN_DATA[0][0]
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
for i in range(15):
|
||||||
|
losses = {}
|
||||||
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
# test the trained model
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
# Also test the results are still the same after IO
|
||||||
|
with make_tempdir() as tmp_dir:
|
||||||
|
nlp.to_disk(tmp_dir)
|
||||||
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
|
doc2 = nlp2(test_text)
|
||||||
|
|
||||||
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
||||||
|
texts = [
|
||||||
|
test_text,
|
||||||
|
"I noticed many friends around me",
|
||||||
|
"They received it. They received the SMS.",
|
||||||
|
]
|
||||||
|
|
||||||
|
# save the docs so they don't get garbage collected
|
||||||
|
docs1 = list(nlp.pipe(texts))
|
||||||
|
docs2 = list(nlp.pipe(texts))
|
||||||
|
docs3 = [nlp(text) for text in texts]
|
||||||
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
|
||||||
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
@ -165,8 +212,26 @@ def test_crossing_spans():
|
||||||
guess = sorted(guess)
|
guess = sorted(guess)
|
||||||
assert gold == guess
|
assert gold == guess
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
def test_sentence_map(snlp):
|
def test_sentence_map(snlp):
|
||||||
doc = snlp("I like text. This is text.")
|
doc = snlp("I like text. This is text.")
|
||||||
sm = get_sentence_ids(doc)
|
sm = get_sentence_ids(doc)
|
||||||
assert sm == [0, 0, 0, 0, 1, 1, 1, 1]
|
assert sm == [0, 0, 0, 0, 1, 1, 1, 1]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_whitespace_mismatch(nlp):
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
eg = Example.from_dict(nlp.make_doc(text), annot)
|
||||||
|
eg.predicted = nlp.make_doc(" " + text)
|
||||||
|
train_examples.append(eg)
|
||||||
|
|
||||||
|
nlp.add_pipe("coref", config=CONFIG)
|
||||||
|
optimizer = nlp.initialize()
|
||||||
|
test_text = TRAIN_DATA[0][0]
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
with pytest.raises(ValueError, match="whitespace"):
|
||||||
|
nlp.update(train_examples, sgd=optimizer)
|
||||||
|
|
227
spacy/tests/pipeline/test_span_predictor.py
Normal file
227
spacy/tests/pipeline/test_span_predictor.py
Normal file
|
@ -0,0 +1,227 @@
|
||||||
|
import pytest
|
||||||
|
import spacy
|
||||||
|
|
||||||
|
from spacy import util
|
||||||
|
from spacy.training import Example
|
||||||
|
from spacy.lang.en import English
|
||||||
|
from spacy.tests.util import make_tempdir
|
||||||
|
from spacy.ml.models.coref_util import (
|
||||||
|
DEFAULT_CLUSTER_PREFIX,
|
||||||
|
select_non_crossing_spans,
|
||||||
|
get_sentence_ids,
|
||||||
|
get_clusters_from_doc,
|
||||||
|
)
|
||||||
|
|
||||||
|
from thinc.util import has_torch
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
TRAIN_DATA = [
|
||||||
|
(
|
||||||
|
"John Smith picked up the red ball and he threw it away.",
|
||||||
|
{
|
||||||
|
"spans": {
|
||||||
|
f"{DEFAULT_CLUSTER_PREFIX}_1": [
|
||||||
|
(0, 10, "MENTION"), # John Smith
|
||||||
|
(38, 40, "MENTION"), # he
|
||||||
|
|
||||||
|
],
|
||||||
|
f"{DEFAULT_CLUSTER_PREFIX}_2": [
|
||||||
|
(25, 33, "MENTION"), # red ball
|
||||||
|
(47, 49, "MENTION"), # it
|
||||||
|
],
|
||||||
|
f"coref_head_clusters_1": [
|
||||||
|
(5, 10, "MENTION"), # Smith
|
||||||
|
(38, 40, "MENTION"), # he
|
||||||
|
|
||||||
|
],
|
||||||
|
f"coref_head_clusters_2": [
|
||||||
|
(29, 33, "MENTION"), # red ball
|
||||||
|
(47, 49, "MENTION"), # it
|
||||||
|
]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
CONFIG = {"model": {"@architectures": "spacy.SpanPredictor.v1", "tok2vec_size": 64}}
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def nlp():
|
||||||
|
return English()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def snlp():
|
||||||
|
en = English()
|
||||||
|
en.add_pipe("sentencizer")
|
||||||
|
return en
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_add_pipe(nlp):
|
||||||
|
nlp.add_pipe("span_predictor")
|
||||||
|
assert nlp.pipe_names == ["span_predictor"]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_not_initialized(nlp):
|
||||||
|
nlp.add_pipe("span_predictor")
|
||||||
|
text = "She gave me her pen."
|
||||||
|
with pytest.raises(ValueError, match="E109"):
|
||||||
|
nlp(text)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_span_predictor_serialization(nlp):
|
||||||
|
# Test that the span predictor component can be serialized
|
||||||
|
nlp.add_pipe("span_predictor", last=True, config=CONFIG)
|
||||||
|
nlp.initialize()
|
||||||
|
assert nlp.pipe_names == ["span_predictor"]
|
||||||
|
text = "She gave me her pen."
|
||||||
|
doc = nlp(text)
|
||||||
|
|
||||||
|
with make_tempdir() as tmp_dir:
|
||||||
|
nlp.to_disk(tmp_dir)
|
||||||
|
nlp2 = spacy.load(tmp_dir)
|
||||||
|
assert nlp2.pipe_names == ["span_predictor"]
|
||||||
|
doc2 = nlp2(text)
|
||||||
|
|
||||||
|
assert get_clusters_from_doc(doc) == get_clusters_from_doc(doc2)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_overfitting_IO(nlp):
|
||||||
|
# Simple test to try and quickly overfit - ensuring the ML models work correctly
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
|
||||||
|
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
eg = Example.from_dict(nlp.make_doc(text), annot)
|
||||||
|
ref = eg.reference
|
||||||
|
# Finally, copy over the head spans to the pred
|
||||||
|
pred = eg.predicted
|
||||||
|
for key, spans in ref.spans.items():
|
||||||
|
if key.startswith("coref_head_clusters"):
|
||||||
|
pred.spans[key] = [pred[span.start : span.end] for span in spans]
|
||||||
|
|
||||||
|
train_examples.append(eg)
|
||||||
|
nlp.add_pipe("span_predictor", config=CONFIG)
|
||||||
|
optimizer = nlp.initialize()
|
||||||
|
test_text = TRAIN_DATA[0][0]
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
for i in range(15):
|
||||||
|
losses = {}
|
||||||
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
# test the trained model, using the pred since it has heads
|
||||||
|
doc = nlp(train_examples[0].predicted)
|
||||||
|
# XXX This actually tests that it can overfit
|
||||||
|
assert get_clusters_from_doc(doc) == get_clusters_from_doc(train_examples[0].reference)
|
||||||
|
|
||||||
|
# Also test the results are still the same after IO
|
||||||
|
with make_tempdir() as tmp_dir:
|
||||||
|
nlp.to_disk(tmp_dir)
|
||||||
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
|
doc2 = nlp2(test_text)
|
||||||
|
|
||||||
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
||||||
|
texts = [
|
||||||
|
test_text,
|
||||||
|
"I noticed many friends around me",
|
||||||
|
"They received it. They received the SMS.",
|
||||||
|
]
|
||||||
|
# XXX Note these have no predictions because they have no input spans
|
||||||
|
docs1 = list(nlp.pipe(texts))
|
||||||
|
docs2 = list(nlp.pipe(texts))
|
||||||
|
docs3 = [nlp(text) for text in texts]
|
||||||
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
|
||||||
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_tokenization_mismatch(nlp):
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
eg = Example.from_dict(nlp.make_doc(text), annot)
|
||||||
|
ref = eg.reference
|
||||||
|
char_spans = {}
|
||||||
|
for key, cluster in ref.spans.items():
|
||||||
|
char_spans[key] = []
|
||||||
|
for span in cluster:
|
||||||
|
char_spans[key].append((span.start_char, span.end_char))
|
||||||
|
with ref.retokenize() as retokenizer:
|
||||||
|
# merge "picked up"
|
||||||
|
retokenizer.merge(ref[2:4])
|
||||||
|
|
||||||
|
# Note this works because it's the same doc and we know the keys
|
||||||
|
for key, _ in ref.spans.items():
|
||||||
|
spans = char_spans[key]
|
||||||
|
ref.spans[key] = [ref.char_span(*span) for span in spans]
|
||||||
|
|
||||||
|
# Finally, copy over the head spans to the pred
|
||||||
|
pred = eg.predicted
|
||||||
|
for key, val in ref.spans.items():
|
||||||
|
if key.startswith("coref_head_clusters"):
|
||||||
|
spans = char_spans[key]
|
||||||
|
pred.spans[key] = [pred.char_span(*span) for span in spans]
|
||||||
|
|
||||||
|
train_examples.append(eg)
|
||||||
|
|
||||||
|
nlp.add_pipe("span_predictor", config=CONFIG)
|
||||||
|
optimizer = nlp.initialize()
|
||||||
|
test_text = TRAIN_DATA[0][0]
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
for i in range(15):
|
||||||
|
losses = {}
|
||||||
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
# test the trained model; need to use doc with head spans on it already
|
||||||
|
test_doc = train_examples[0].predicted
|
||||||
|
doc = nlp(test_doc)
|
||||||
|
# XXX This actually tests that it can overfit
|
||||||
|
assert get_clusters_from_doc(doc) == get_clusters_from_doc(train_examples[0].reference)
|
||||||
|
|
||||||
|
# Also test the results are still the same after IO
|
||||||
|
with make_tempdir() as tmp_dir:
|
||||||
|
nlp.to_disk(tmp_dir)
|
||||||
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
|
doc2 = nlp2(test_text)
|
||||||
|
|
||||||
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
||||||
|
texts = [
|
||||||
|
test_text,
|
||||||
|
"I noticed many friends around me",
|
||||||
|
"They received it. They received the SMS.",
|
||||||
|
]
|
||||||
|
|
||||||
|
# save the docs so they don't get garbage collected
|
||||||
|
docs1 = list(nlp.pipe(texts))
|
||||||
|
docs2 = list(nlp.pipe(texts))
|
||||||
|
docs3 = [nlp(text) for text in texts]
|
||||||
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
|
||||||
|
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not has_torch, reason="Torch not available")
|
||||||
|
def test_whitespace_mismatch(nlp):
|
||||||
|
train_examples = []
|
||||||
|
for text, annot in TRAIN_DATA:
|
||||||
|
eg = Example.from_dict(nlp.make_doc(text), annot)
|
||||||
|
eg.predicted = nlp.make_doc(" " + text)
|
||||||
|
train_examples.append(eg)
|
||||||
|
|
||||||
|
nlp.add_pipe("span_predictor", config=CONFIG)
|
||||||
|
optimizer = nlp.initialize()
|
||||||
|
test_text = TRAIN_DATA[0][0]
|
||||||
|
doc = nlp(test_text)
|
||||||
|
|
||||||
|
with pytest.raises(ValueError, match="whitespace"):
|
||||||
|
nlp.update(train_examples, sgd=optimizer)
|
Loading…
Reference in New Issue
Block a user