mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge remote-tracking branch 'upstream/develop' into feature/docs-docs-docs
This commit is contained in:
commit
1b7cfa7347
|
@ -110,13 +110,11 @@ Instead of defining its own `Tok2Vec` instance, a model architecture like
|
||||||
[Tagger](/api/architectures#tagger) can define a listener as its `tok2vec`
|
[Tagger](/api/architectures#tagger) can define a listener as its `tok2vec`
|
||||||
argument that connects to the shared `tok2vec` component in the pipeline.
|
argument that connects to the shared `tok2vec` component in the pipeline.
|
||||||
|
|
||||||
<!-- TODO: return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `width` | The width of the vectors produced by the "upstream" [`Tok2Vec`](/api/tok2vec) component. ~~int~~ |
|
| `width` | The width of the vectors produced by the "upstream" [`Tok2Vec`](/api/tok2vec) component. ~~int~~ |
|
||||||
| `upstream` | A string to identify the "upstream" `Tok2Vec` component to communicate with. The upstream name should either be the wildcard string `"*"`, or the name of the `Tok2Vec` component. You'll almost never have multiple upstream `Tok2Vec` components, so the wildcard string will almost always be fine. ~~str~~ |
|
| `upstream` | A string to identify the "upstream" `Tok2Vec` component to communicate with. The upstream name should either be the wildcard string `"*"`, or the name of the `Tok2Vec` component. You'll almost never have multiple upstream `Tok2Vec` components, so the wildcard string will almost always be fine. ~~str~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||||
|
|
||||||
### spacy.MultiHashEmbed.v1 {#MultiHashEmbed}
|
### spacy.MultiHashEmbed.v1 {#MultiHashEmbed}
|
||||||
|
|
||||||
|
@ -139,15 +137,13 @@ definitions depending on the `Vocab` of the `Doc` object passed in. Vectors from
|
||||||
pretrained static vectors can also be incorporated into the concatenated
|
pretrained static vectors can also be incorporated into the concatenated
|
||||||
representation.
|
representation.
|
||||||
|
|
||||||
<!-- TODO: model return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `width` | The output width. Also used as the width of the embedding tables. Recommended values are between `64` and `300`. ~~int~~ |
|
| `width` | The output width. Also used as the width of the embedding tables. Recommended values are between `64` and `300`. ~~int~~ |
|
||||||
| `rows` | The number of rows for the embedding tables. Can be low, due to the hashing trick. Embeddings for prefix, suffix and word shape use half as many rows. Recommended values are between `2000` and `10000`. ~~int~~ |
|
| `rows` | The number of rows for the embedding tables. Can be low, due to the hashing trick. Embeddings for prefix, suffix and word shape use half as many rows. Recommended values are between `2000` and `10000`. ~~int~~ |
|
||||||
| `also_embed_subwords` | Whether to use the `PREFIX`, `SUFFIX` and `SHAPE` features in the embeddings. If not using these, you may need more rows in your hash embeddings, as there will be increased chance of collisions. ~~bool~~ |
|
| `also_embed_subwords` | Whether to use the `PREFIX`, `SUFFIX` and `SHAPE` features in the embeddings. If not using these, you may need more rows in your hash embeddings, as there will be increased chance of collisions. ~~bool~~ |
|
||||||
| `also_use_static_vectors` | Whether to also use static word vectors. Requires a vectors table to be loaded in the [Doc](/api/doc) objects' vocab. ~~bool~~ |
|
| `also_use_static_vectors` | Whether to also use static word vectors. Requires a vectors table to be loaded in the [Doc](/api/doc) objects' vocab. ~~bool~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||||
|
|
||||||
### spacy.CharacterEmbed.v1 {#CharacterEmbed}
|
### spacy.CharacterEmbed.v1 {#CharacterEmbed}
|
||||||
|
|
||||||
|
@ -178,15 +174,13 @@ concatenated. A hash-embedded vector of the `NORM` of the word is also
|
||||||
concatenated on, and the result is then passed through a feed-forward network to
|
concatenated on, and the result is then passed through a feed-forward network to
|
||||||
construct a single vector to represent the information.
|
construct a single vector to represent the information.
|
||||||
|
|
||||||
<!-- TODO: model return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `width` | The width of the output vector and the `NORM` hash embedding. ~~int~~ |
|
| `width` | The width of the output vector and the `NORM` hash embedding. ~~int~~ |
|
||||||
| `rows` | The number of rows in the `NORM` hash embedding table. ~~int~~ |
|
| `rows` | The number of rows in the `NORM` hash embedding table. ~~int~~ |
|
||||||
| `nM` | The dimensionality of the character embeddings. Recommended values are between `16` and `64`. ~~int~~ |
|
| `nM` | The dimensionality of the character embeddings. Recommended values are between `16` and `64`. ~~int~~ |
|
||||||
| `nC` | The number of UTF-8 bytes to embed per word. Recommended values are between `3` and `8`, although it may depend on the length of words in the language. ~~int~~ |
|
| `nC` | The number of UTF-8 bytes to embed per word. Recommended values are between `3` and `8`, although it may depend on the length of words in the language. ~~int~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||||
|
|
||||||
### spacy.MaxoutWindowEncoder.v1 {#MaxoutWindowEncoder}
|
### spacy.MaxoutWindowEncoder.v1 {#MaxoutWindowEncoder}
|
||||||
|
|
||||||
|
@ -277,12 +271,10 @@ Embed [`Doc`](/api/doc) objects with their vocab's vectors table, applying a
|
||||||
learned linear projection to control the dimensionality. See the documentation
|
learned linear projection to control the dimensionality. See the documentation
|
||||||
on [static vectors](/usage/embeddings-transformers#static-vectors) for details.
|
on [static vectors](/usage/embeddings-transformers#static-vectors) for details.
|
||||||
|
|
||||||
<!-- TODO: document argument descriptions -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `nO` | Defaults to `None`. ~~Optional[int]~~ |
|
| `nO` | The output width of the layer, after the linear projection. ~~Optional[int]~~ |
|
||||||
| `nM` | Defaults to `None`. ~~Optional[int]~~ |
|
| `nM` | The width of the static vectors. ~~Optional[int]~~ |
|
||||||
| `dropout` | Optional dropout rate. If set, it's applied per dimension over the whole batch. Defaults to `None`. ~~Optional[float]~~ |
|
| `dropout` | Optional dropout rate. If set, it's applied per dimension over the whole batch. Defaults to `None`. ~~Optional[float]~~ |
|
||||||
| `init_W` | The [initialization function](https://thinc.ai/docs/api-initializers). Defaults to [`glorot_uniform_init`](https://thinc.ai/docs/api-initializers#glorot_uniform_init). ~~Callable[[Ops, Tuple[int, ...]]], FloatsXd]~~ |
|
| `init_W` | The [initialization function](https://thinc.ai/docs/api-initializers). Defaults to [`glorot_uniform_init`](https://thinc.ai/docs/api-initializers#glorot_uniform_init). ~~Callable[[Ops, Tuple[int, ...]]], FloatsXd]~~ |
|
||||||
| `key_attr` | Defaults to `"ORTH"`. ~~str~~ |
|
| `key_attr` | Defaults to `"ORTH"`. ~~str~~ |
|
||||||
|
@ -311,7 +303,23 @@ architectures into your training config.
|
||||||
> stride = 96
|
> stride = 96
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
<!-- TODO: description -->
|
Load and wrap a transformer model from the
|
||||||
|
[HuggingFace `transformers`](https://huggingface.co/transformers) library. You
|
||||||
|
can any transformer that has pretrained weights and a PyTorch implementation.
|
||||||
|
The `name` variable is passed through to the underlying library, so it can be
|
||||||
|
either a string or a path. If it's a string, the pretrained weights will be
|
||||||
|
downloaded via the transformers library if they are not already available
|
||||||
|
locally.
|
||||||
|
|
||||||
|
In order to support longer documents, the
|
||||||
|
[TransformerModel](/api/architectures#TransformerModel) layer allows you to pass
|
||||||
|
in a `get_spans` function that will divide up the [`Doc`](/api/doc) objects
|
||||||
|
before passing them through the transformer. Your spans are allowed to overlap
|
||||||
|
or exclude tokens. This layer is usually used directly by the
|
||||||
|
[`Transformer`](/api/transformer) component, which allows you to share the
|
||||||
|
transformer weights across your pipeline. For a layer that's configured for use
|
||||||
|
in other components, see
|
||||||
|
[Tok2VecTransformer](/api/architectures#Tok2VecTransformer).
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
@ -541,8 +549,6 @@ specific data and challenge.
|
||||||
Stacked ensemble of a bag-of-words model and a neural network model. The neural
|
Stacked ensemble of a bag-of-words model and a neural network model. The neural
|
||||||
network has an internal CNN Tok2Vec layer and uses attention.
|
network has an internal CNN Tok2Vec layer and uses attention.
|
||||||
|
|
||||||
<!-- TODO: model return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| -------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| -------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||||
|
@ -554,7 +560,7 @@ network has an internal CNN Tok2Vec layer and uses attention.
|
||||||
| `ngram_size` | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features. ~~int~~ |
|
| `ngram_size` | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features. ~~int~~ |
|
||||||
| `dropout` | The dropout rate. ~~float~~ |
|
| `dropout` | The dropout rate. ~~float~~ |
|
||||||
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
### spacy.TextCatCNN.v1 {#TextCatCNN}
|
### spacy.TextCatCNN.v1 {#TextCatCNN}
|
||||||
|
|
||||||
|
@ -581,14 +587,12 @@ A neural network model where token vectors are calculated using a CNN. The
|
||||||
vectors are mean pooled and used as features in a feed-forward network. This
|
vectors are mean pooled and used as features in a feed-forward network. This
|
||||||
architecture is usually less accurate than the ensemble, but runs faster.
|
architecture is usually less accurate than the ensemble, but runs faster.
|
||||||
|
|
||||||
<!-- TODO: model return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||||
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
### spacy.TextCatBOW.v1 {#TextCatBOW}
|
### spacy.TextCatBOW.v1 {#TextCatBOW}
|
||||||
|
|
||||||
|
@ -606,15 +610,13 @@ architecture is usually less accurate than the ensemble, but runs faster.
|
||||||
An ngram "bag-of-words" model. This architecture should run much faster than the
|
An ngram "bag-of-words" model. This architecture should run much faster than the
|
||||||
others, but may not be as accurate, especially if texts are short.
|
others, but may not be as accurate, especially if texts are short.
|
||||||
|
|
||||||
<!-- TODO: model return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||||
| `ngram_size` | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features. ~~int~~ |
|
| `ngram_size` | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features. ~~int~~ |
|
||||||
| `no_output_layer` | Whether or not to add an output layer to the model (`Softmax` activation if `exclusive_classes` is `True`, else `Logistic`. ~~bool~~ |
|
| `no_output_layer` | Whether or not to add an output layer to the model (`Softmax` activation if `exclusive_classes` is `True`, else `Logistic`. ~~bool~~ |
|
||||||
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
## Entity linking architectures {#entitylinker source="spacy/ml/models/entity_linker.py"}
|
## Entity linking architectures {#entitylinker source="spacy/ml/models/entity_linker.py"}
|
||||||
|
|
||||||
|
@ -659,13 +661,11 @@ into the "real world". This requires 3 main components:
|
||||||
The `EntityLinker` model architecture is a Thinc `Model` with a
|
The `EntityLinker` model architecture is a Thinc `Model` with a
|
||||||
[`Linear`](https://thinc.ai/api-layers#linear) output layer.
|
[`Linear`](https://thinc.ai/api-layers#linear) output layer.
|
||||||
|
|
||||||
<!-- TODO: model return type -->
|
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||||
| `nO` | Output dimension, determined by the length of the vectors encoding each entity in the KB. If the `nO` dimension is not set, the entity linking component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
| `nO` | Output dimension, determined by the length of the vectors encoding each entity in the KB. If the `nO` dimension is not set, the entity linking component will set it when `begin_training` is called. ~~Optional[int]~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
### spacy.EmptyKB.v1 {#EmptyKB}
|
### spacy.EmptyKB.v1 {#EmptyKB}
|
||||||
|
|
||||||
|
|
93
website/docs/usage/layers-architectures.md
Normal file
93
website/docs/usage/layers-architectures.md
Normal file
|
@ -0,0 +1,93 @@
|
||||||
|
---
|
||||||
|
title: Layers and Model Architectures
|
||||||
|
teaser: Power spaCy components with custom neural networks
|
||||||
|
menu:
|
||||||
|
- ['Type Signatures', 'type-sigs']
|
||||||
|
- ['Defining Sublayers', 'sublayers']
|
||||||
|
- ['PyTorch & TensorFlow', 'frameworks']
|
||||||
|
- ['Trainable Components', 'components']
|
||||||
|
next: /usage/projects
|
||||||
|
---
|
||||||
|
|
||||||
|
A **model architecture** is a function that wires up a
|
||||||
|
[Thinc `Model`](https://thinc.ai/docs/api-model) instance, which you can then
|
||||||
|
use in a component or as a layer of a larger network. You can use Thinc as a
|
||||||
|
thin wrapper around frameworks such as PyTorch, TensorFlow or MXNet, or you can
|
||||||
|
implement your logic in Thinc directly. spaCy's built-in components will never
|
||||||
|
construct their `Model` instances themselves, so you won't have to subclass the
|
||||||
|
component to change its model architecture. You can just **update the config**
|
||||||
|
so that it refers to a different registered function. Once the component has
|
||||||
|
been created, its model instance has already been assigned, so you cannot change
|
||||||
|
its model architecture. The architecture is like a recipe for the network, and
|
||||||
|
you can't change the recipe once the dish has already been prepared. You have to
|
||||||
|
make a new one.
|
||||||
|
|
||||||
|
## Type signatures {#type-sigs}
|
||||||
|
|
||||||
|
The Thinc `Model` class is a **generic type** that can specify its input and
|
||||||
|
output types. Python uses a square-bracket notation for this, so the type
|
||||||
|
~~Model[List, Dict]~~ says that each batch of inputs to the model will be a
|
||||||
|
list, and the outputs will be a dictionary. Both `typing.List` and `typing.Dict`
|
||||||
|
are also generics, allowing you to be more specific about the data. For
|
||||||
|
instance, you can write ~~Model[List[Doc], Dict[str, float]]~~ to specify that
|
||||||
|
the model expects a list of [`Doc`](/api/doc) objects as input, and returns a
|
||||||
|
dictionary mapping strings to floats. Some of the most common types you'll see
|
||||||
|
are:
|
||||||
|
|
||||||
|
| Type | Description |
|
||||||
|
| ------------------ | ---------------------------------------------------------------------------------------------------- |
|
||||||
|
| ~~List[Doc]~~ | A batch of [`Doc`](/api/doc) objects. Most components expect their models to take this as input. |
|
||||||
|
| ~~Floats2d~~ | A two-dimensional `numpy` or `cupy` array of floats. Usually 32-bit. |
|
||||||
|
| ~~Ints2d~~ | A two-dimensional `numpy` or `cupy` array of integers. Common dtypes include uint64, int32 and int8. |
|
||||||
|
| ~~List[Floats2d]~~ | A list of two-dimensional arrays, generally with one array per `Doc` and one row per token. |
|
||||||
|
| ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. |
|
||||||
|
| ~~Padded~~ | A container to handle variable-length sequence data in a passed contiguous array. |
|
||||||
|
|
||||||
|
The model type-signatures help you figure out which model architectures and
|
||||||
|
components can fit together. For instance, the
|
||||||
|
[`TextCategorizer`](/api/textcategorizer) class expects a model typed
|
||||||
|
~~Model[List[Doc], Floats2d]~~, because the model will predict one row of
|
||||||
|
category probabilities per `Doc`. In contrast, the `Tagger` class expects a
|
||||||
|
model typed ~~Model[List[Doc], List[Floats2d]]~~, because it needs to predict
|
||||||
|
one row of probabilities per token. There's no guarantee that two models with
|
||||||
|
the same type-signature can be used interchangeably. There are many other ways
|
||||||
|
they could be incompatible. However, if the types don't match, they almost
|
||||||
|
surely _won't_ be compatible. This little bit of validation goes a long way,
|
||||||
|
especially if you configure your editor or other tools to highlight these errors
|
||||||
|
early. Thinc will also verify that your types match correctly when your config
|
||||||
|
file is processed at the beginning of training.
|
||||||
|
|
||||||
|
## Defining sublayers {#sublayers}
|
||||||
|
|
||||||
|
Model architecture functions often accept sublayers as arguments, so that you
|
||||||
|
can try substituting a different layer into the network. Depending on how the
|
||||||
|
architecture function is structured, you might be able to define your network
|
||||||
|
structure entirely through the [config system](/usage/training#config), using
|
||||||
|
layers that have already been defined. The
|
||||||
|
[transformers documentation](/usage/embeddings-transformers#transformers)
|
||||||
|
section shows a common example of swapping in a different sublayer. In most NLP
|
||||||
|
neural network models, the most important parts of the network are what we refer
|
||||||
|
to as the
|
||||||
|
[embed and encode](https://explosion.ai/blog/embed-encode-attend-predict) steps.
|
||||||
|
These steps together compute dense, context-sensitive representations of the
|
||||||
|
tokens. Most of spaCy's default architectures accept a `tok2vec` layer as an
|
||||||
|
argument, so you can control this important part of the network separately. This
|
||||||
|
makes it easy to switch between transformer, CNN, BiLSTM or other feature
|
||||||
|
extraction approaches. And if you want to define your own solution, all you need
|
||||||
|
to do is register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function,
|
||||||
|
and you'll be able to try it out in any of spaCy components.
|
||||||
|
|
||||||
|
### Registering new architectures
|
||||||
|
|
||||||
|
- Recap concept, link to config docs.
|
||||||
|
|
||||||
|
## Wrapping PyTorch, TensorFlow and other frameworks {#frameworks}
|
||||||
|
|
||||||
|
- Explain concept
|
||||||
|
- Link off to notebook
|
||||||
|
|
||||||
|
## Models for trainable components {#components}
|
||||||
|
|
||||||
|
- Interaction with `predict`, `get_loss` and `set_annotations`
|
||||||
|
- Initialization life-cycle with `begin_training`.
|
||||||
|
- Link to relation extraction notebook.
|
|
@ -1,6 +1,6 @@
|
||||||
---
|
---
|
||||||
title: Training Models
|
title: Training Models
|
||||||
next: /usage/projects
|
next: /usage/layers-architectures
|
||||||
menu:
|
menu:
|
||||||
- ['Introduction', 'basics']
|
- ['Introduction', 'basics']
|
||||||
- ['Quickstart', 'quickstart']
|
- ['Quickstart', 'quickstart']
|
||||||
|
|
|
@ -292,7 +292,9 @@ format for documenting argument and return types.
|
||||||
<Infobox title="New or reworked documentation" emoji="📖" list>
|
<Infobox title="New or reworked documentation" emoji="📖" list>
|
||||||
|
|
||||||
- **Usage: ** [Embeddings & Transformers](/usage/embeddings-transformers),
|
- **Usage: ** [Embeddings & Transformers](/usage/embeddings-transformers),
|
||||||
[Training models](/usage/training), [Projects](/usage/projects),
|
[Training models](/usage/training),
|
||||||
|
[Layers & Architectures](/usage/layers-architectures),
|
||||||
|
[Projects](/usage/projects),
|
||||||
[Custom pipeline components](/usage/processing-pipelines#custom-components),
|
[Custom pipeline components](/usage/processing-pipelines#custom-components),
|
||||||
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer)
|
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer)
|
||||||
- **API Reference: ** [Library architecture](/api),
|
- **API Reference: ** [Library architecture](/api),
|
||||||
|
|
|
@ -24,6 +24,11 @@
|
||||||
"tag": "new"
|
"tag": "new"
|
||||||
},
|
},
|
||||||
{ "text": "Training Models", "url": "/usage/training", "tag": "new" },
|
{ "text": "Training Models", "url": "/usage/training", "tag": "new" },
|
||||||
|
{
|
||||||
|
"text": "Layers & Model Architectures",
|
||||||
|
"url": "/usage/layers-architectures",
|
||||||
|
"tag": "new"
|
||||||
|
},
|
||||||
{ "text": "spaCy Projects", "url": "/usage/projects", "tag": "new" },
|
{ "text": "spaCy Projects", "url": "/usage/projects", "tag": "new" },
|
||||||
{ "text": "Saving & Loading", "url": "/usage/saving-loading" },
|
{ "text": "Saving & Loading", "url": "/usage/saving-loading" },
|
||||||
{ "text": "Visualizers", "url": "/usage/visualizers" }
|
{ "text": "Visualizers", "url": "/usage/visualizers" }
|
||||||
|
|
|
@ -29,6 +29,8 @@
|
||||||
"Optimizer": "https://thinc.ai/docs/api-optimizers",
|
"Optimizer": "https://thinc.ai/docs/api-optimizers",
|
||||||
"Model": "https://thinc.ai/docs/api-model",
|
"Model": "https://thinc.ai/docs/api-model",
|
||||||
"Ragged": "https://thinc.ai/docs/api-types#ragged",
|
"Ragged": "https://thinc.ai/docs/api-types#ragged",
|
||||||
|
"Padded": "https://thinc.ai/docs/api-types#padded",
|
||||||
|
"Ints2d": "https://thinc.ai/docs/api-types#types",
|
||||||
"Floats2d": "https://thinc.ai/docs/api-types#types",
|
"Floats2d": "https://thinc.ai/docs/api-types#types",
|
||||||
"Floats3d": "https://thinc.ai/docs/api-types#types",
|
"Floats3d": "https://thinc.ai/docs/api-types#types",
|
||||||
"FloatsXd": "https://thinc.ai/docs/api-types#types",
|
"FloatsXd": "https://thinc.ai/docs/api-types#types",
|
||||||
|
|
|
@ -67,7 +67,7 @@
|
||||||
border: 0
|
border: 0
|
||||||
|
|
||||||
// Special style for types in API tables
|
// Special style for types in API tables
|
||||||
td > &:last-child
|
td:not(:first-child) > &:last-child
|
||||||
display: block
|
display: block
|
||||||
border-top: 1px dotted var(--color-subtle)
|
border-top: 1px dotted var(--color-subtle)
|
||||||
border-radius: 0
|
border-radius: 0
|
||||||
|
|
Loading…
Reference in New Issue
Block a user