mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
swapping section
This commit is contained in:
parent
57e432ba2a
commit
1be7ff02a6
|
@ -12,33 +12,33 @@ next: /usage/projects
|
|||
|
||||
> #### Example
|
||||
>
|
||||
> ````python
|
||||
> ```python
|
||||
> from thinc.api import Model, chain
|
||||
>
|
||||
>
|
||||
> @spacy.registry.architectures.register("model.v1")
|
||||
> def build_model(width: int, classes: int) -> Model:
|
||||
> tok2vec = build_tok2vec(width)
|
||||
> output_layer = build_output_layer(width, classes)
|
||||
> model = chain(tok2vec, output_layer)
|
||||
> return model
|
||||
> ````
|
||||
> ```
|
||||
|
||||
A **model architecture** is a function that wires up a
|
||||
[Thinc `Model`](https://thinc.ai/docs/api-model) instance. It describes the
|
||||
neural network that is run internally as part of a component in a spaCy pipeline.
|
||||
To define the actual architecture, you can implement your logic in
|
||||
Thinc directly, or you can use Thinc as a thin wrapper around frameworks
|
||||
such as PyTorch, TensorFlow and MXNet. Each Model can also be used as a sublayer
|
||||
of a larger network, allowing you to freely combine implementations from different
|
||||
neural network that is run internally as part of a component in a spaCy
|
||||
pipeline. To define the actual architecture, you can implement your logic in
|
||||
Thinc directly, or you can use Thinc as a thin wrapper around frameworks such as
|
||||
PyTorch, TensorFlow and MXNet. Each Model can also be used as a sublayer of a
|
||||
larger network, allowing you to freely combine implementations from different
|
||||
frameworks into one `Thinc` Model.
|
||||
|
||||
spaCy's built-in components require a `Model` instance to be passed to them via
|
||||
the config system. To change the model architecture of an existing component,
|
||||
you just need to **update the config** so that it refers to a different
|
||||
registered function. Once the component has been created from this config, you
|
||||
won't be able to change it anymore. The architecture is like a recipe for the
|
||||
network, and you can't change the recipe once the dish has already been
|
||||
prepared. You have to make a new one.
|
||||
you just need to [**update the config**](#swap-architectures) so that it refers
|
||||
to a different registered function. Once the component has been created from
|
||||
this config, you won't be able to change it anymore. The architecture is like a
|
||||
recipe for the network, and you can't change the recipe once the dish has
|
||||
already been prepared. You have to make a new one.
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
|
@ -53,8 +53,6 @@ classes = 16
|
|||
|
||||
## Type signatures {#type-sigs}
|
||||
|
||||
<!-- TODO: update example, maybe simplify definition? -->
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
|
@ -62,8 +60,8 @@ classes = 16
|
|||
> from thinc.api import Model, chain
|
||||
> from thinc.types import Floats2d
|
||||
> def chain_model(
|
||||
> tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
> layer1: Model[List[Floats2d], Floats2d],
|
||||
> tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
> layer1: Model[List[Floats2d], Floats2d],
|
||||
> layer2: Model[Floats2d, Floats2d]
|
||||
> ) -> Model[List[Doc], Floats2d]:
|
||||
> model = chain(tok2vec, layer1, layer2)
|
||||
|
@ -73,11 +71,11 @@ classes = 16
|
|||
The Thinc `Model` class is a **generic type** that can specify its input and
|
||||
output types. Python uses a square-bracket notation for this, so the type
|
||||
~~Model[List, Dict]~~ says that each batch of inputs to the model will be a
|
||||
list, and the outputs will be a dictionary. You can be even more specific and
|
||||
write for instance~~Model[List[Doc], Dict[str, float]]~~ to specify that
|
||||
the model expects a list of [`Doc`](/api/doc) objects as input, and returns a
|
||||
dictionary mapping of strings to floats. Some of the most common types you'll see
|
||||
are:
|
||||
list, and the outputs will be a dictionary. You can be even more specific and
|
||||
write for instance~~Model[List[Doc], Dict[str, float]]~~ to specify that the
|
||||
model expects a list of [`Doc`](/api/doc) objects as input, and returns a
|
||||
dictionary mapping of strings to floats. Some of the most common types you'll
|
||||
see are:
|
||||
|
||||
| Type | Description |
|
||||
| ------------------ | ---------------------------------------------------------------------------------------------------- |
|
||||
|
@ -102,8 +100,8 @@ interchangeably. There are many other ways they could be incompatible. However,
|
|||
if the types don't match, they almost surely _won't_ be compatible. This little
|
||||
bit of validation goes a long way, especially if you
|
||||
[configure your editor](https://thinc.ai/docs/usage-type-checking) or other
|
||||
tools to highlight these errors early. The config file is also validated
|
||||
at the beginning of training, to verify that all the types match correctly.
|
||||
tools to highlight these errors early. The config file is also validated at the
|
||||
beginning of training, to verify that all the types match correctly.
|
||||
|
||||
<Accordion title="Tip: Static type checking in your editor" emoji="💡">
|
||||
|
||||
|
@ -118,7 +116,52 @@ code.
|
|||
|
||||
## Swapping model architectures {#swap-architectures}
|
||||
|
||||
<!-- TODO: textcat example, using different architecture in the config -->
|
||||
If no model is specified for the [`TextCategorizer`](/api/textcategorizer), the
|
||||
[TextCatEnsemble](/api/architectures#TextCatEnsemble) architecture is used by
|
||||
default. This architecture combines a simpel bag-of-words model with a neural
|
||||
network, usually resulting in the most accurate results, but at the cost of
|
||||
speed. The config file for this model would look something like this:
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
labels = []
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatEnsemble.v1"
|
||||
exclusive_classes = false
|
||||
pretrained_vectors = null
|
||||
width = 64
|
||||
conv_depth = 2
|
||||
embed_size = 2000
|
||||
window_size = 1
|
||||
ngram_size = 1
|
||||
dropout = 0
|
||||
nO = null
|
||||
```
|
||||
|
||||
spaCy has two additional built-in `textcat` architectures, and you can easily
|
||||
use those by swapping out the definition of the textcat's model. For instance,
|
||||
to use the simpel and fast [bag-of-words model](/api/architectures#TextCatBOW),
|
||||
you can change the config to:
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
labels = []
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = false
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
nO = null
|
||||
```
|
||||
|
||||
The details of all prebuilt architectures and their parameters, can be consulted
|
||||
on the [API page for model architectures](/api/architectures).
|
||||
|
||||
### Defining sublayers {#sublayers}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user