mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-03 05:04:09 +03:00
Merge branch 'feature/prepare' of https://github.com/explosion/spaCy into feature/prepare
This commit is contained in:
commit
1c60f0b5e9
|
@ -34,7 +34,7 @@ def init_labels_cli(
|
|||
with show_validation_error(config_path):
|
||||
config = util.load_config(config_path, overrides=overrides)
|
||||
with show_validation_error(hint_fill=False):
|
||||
nlp = init_nlp(config, use_gpu=use_gpu, silent=False)
|
||||
nlp = init_nlp(config, use_gpu=use_gpu)
|
||||
for name, component in nlp.pipeline:
|
||||
if getattr(component, "label_data", None) is not None:
|
||||
srsly.write_json(output_path / f"{name}.json", component.label_data)
|
||||
|
|
|
@ -56,7 +56,7 @@ def train_cli(
|
|||
def init_pipeline(
|
||||
config: Config, output_path: Optional[Path], *, use_gpu: int = -1
|
||||
) -> Language:
|
||||
init_kwargs = {"use_gpu": use_gpu, "silent": False}
|
||||
init_kwargs = {"use_gpu": use_gpu}
|
||||
if output_path is not None:
|
||||
init_path = output_path / "model-initial"
|
||||
if not init_path.exists():
|
||||
|
@ -74,12 +74,6 @@ def init_pipeline(
|
|||
else:
|
||||
msg.good(f"Loaded initialized pipeline from {init_path}")
|
||||
return nlp
|
||||
msg.warn(
|
||||
"Not saving initialized model: no output directory specified. "
|
||||
"To speed up training, spaCy can save the initialized nlp object with "
|
||||
"the vocabulary, vectors and label scheme. To take advantage of this, "
|
||||
"provide an output directory."
|
||||
)
|
||||
return init_nlp(config, **init_kwargs)
|
||||
|
||||
|
||||
|
|
|
@ -1181,24 +1181,9 @@ class Language:
|
|||
)
|
||||
doc = Doc(self.vocab, words=["x", "y", "z"])
|
||||
get_examples = lambda: [Example.from_dict(doc, {})]
|
||||
# Populate vocab
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="Language", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
valid_examples = False
|
||||
for example in get_examples():
|
||||
if not isinstance(example, Example):
|
||||
err = Errors.E978.format(
|
||||
name="Language.initialize", types=type(example)
|
||||
)
|
||||
raise ValueError(err)
|
||||
else:
|
||||
valid_examples = True
|
||||
for word in [t.text for t in example.reference]:
|
||||
_ = self.vocab[word] # noqa: F841
|
||||
if not valid_examples:
|
||||
err = Errors.E930.format(name="Language", obj="empty list")
|
||||
raise ValueError(err)
|
||||
# Make sure the config is interpolated so we can resolve subsections
|
||||
config = self.config.interpolate()
|
||||
# These are the settings provided in the [initialize] block in the config
|
||||
|
|
|
@ -35,10 +35,7 @@ cdef class Pipe:
|
|||
|
||||
@property
|
||||
def labels(self) -> Optional[Tuple[str]]:
|
||||
if "labels" in self.cfg:
|
||||
return tuple(self.cfg["labels"])
|
||||
else:
|
||||
return None
|
||||
return []
|
||||
|
||||
@property
|
||||
def label_data(self):
|
||||
|
|
|
@ -266,7 +266,7 @@ class Tagger(Pipe):
|
|||
raise ValueError("nan value when computing loss")
|
||||
return float(loss), d_scores
|
||||
|
||||
def initialize(self, get_examples, *, nlp=None):
|
||||
def initialize(self, get_examples, *, nlp=None, labels=None):
|
||||
"""Initialize the pipe for training, using a representative set
|
||||
of data examples.
|
||||
|
||||
|
@ -277,15 +277,19 @@ class Tagger(Pipe):
|
|||
DOCS: https://nightly.spacy.io/api/tagger#initialize
|
||||
"""
|
||||
self._ensure_examples(get_examples)
|
||||
if labels is not None:
|
||||
for tag in labels:
|
||||
self.add_label(tag)
|
||||
else:
|
||||
tags = set()
|
||||
for example in get_examples():
|
||||
for token in example.y:
|
||||
if token.tag_:
|
||||
tags.add(token.tag_)
|
||||
for tag in sorted(tags):
|
||||
self.add_label(tag)
|
||||
doc_sample = []
|
||||
label_sample = []
|
||||
tags = set()
|
||||
for example in get_examples():
|
||||
for token in example.y:
|
||||
if token.tag_:
|
||||
tags.add(token.tag_)
|
||||
for tag in sorted(tags):
|
||||
self.add_label(tag)
|
||||
for example in islice(get_examples(), 10):
|
||||
doc_sample.append(example.x)
|
||||
gold_tags = example.get_aligned("TAG", as_string=True)
|
||||
|
|
|
@ -160,16 +160,12 @@ class TextCategorizer(Pipe):
|
|||
self.cfg["labels"] = tuple(value)
|
||||
|
||||
@property
|
||||
def label_data(self) -> Dict:
|
||||
"""RETURNS (Dict): Information about the component's labels.
|
||||
def label_data(self) -> List[str]:
|
||||
"""RETURNS (List[str]): Information about the component's labels.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/textcategorizer#labels
|
||||
"""
|
||||
return {
|
||||
"labels": self.labels,
|
||||
"positive": self.cfg["positive_label"],
|
||||
"threshold": self.cfg["threshold"]
|
||||
}
|
||||
return self.labels
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
|
@ -354,6 +350,7 @@ class TextCategorizer(Pipe):
|
|||
get_examples: Callable[[], Iterable[Example]],
|
||||
*,
|
||||
nlp: Optional[Language] = None,
|
||||
labels: Optional[Dict] = None
|
||||
):
|
||||
"""Initialize the pipe for training, using a representative set
|
||||
of data examples.
|
||||
|
@ -365,12 +362,14 @@ class TextCategorizer(Pipe):
|
|||
DOCS: https://nightly.spacy.io/api/textcategorizer#initialize
|
||||
"""
|
||||
self._ensure_examples(get_examples)
|
||||
subbatch = [] # Select a subbatch of examples to initialize the model
|
||||
for example in islice(get_examples(), 10):
|
||||
if len(subbatch) < 2:
|
||||
subbatch.append(example)
|
||||
for cat in example.y.cats:
|
||||
self.add_label(cat)
|
||||
if labels is None:
|
||||
for example in get_examples():
|
||||
for cat in example.y.cats:
|
||||
self.add_label(cat)
|
||||
else:
|
||||
for label in labels:
|
||||
self.add_label(label)
|
||||
subbatch = list(islice(get_examples(), 10))
|
||||
doc_sample = [eg.reference for eg in subbatch]
|
||||
label_sample, _ = self._examples_to_truth(subbatch)
|
||||
self._require_labels()
|
||||
|
|
|
@ -409,17 +409,20 @@ cdef class Parser(Pipe):
|
|||
def set_output(self, nO):
|
||||
self.model.attrs["resize_output"](self.model, nO)
|
||||
|
||||
def initialize(self, get_examples, nlp=None):
|
||||
def initialize(self, get_examples, *, nlp=None, labels=None):
|
||||
self._ensure_examples(get_examples)
|
||||
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
|
||||
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
|
||||
langs = ", ".join(util.LEXEME_NORM_LANGS)
|
||||
util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs))
|
||||
actions = self.moves.get_actions(
|
||||
examples=get_examples(),
|
||||
min_freq=self.cfg['min_action_freq'],
|
||||
learn_tokens=self.cfg["learn_tokens"]
|
||||
)
|
||||
if labels is not None:
|
||||
actions = dict(labels)
|
||||
else:
|
||||
actions = self.moves.get_actions(
|
||||
examples=get_examples(),
|
||||
min_freq=self.cfg['min_action_freq'],
|
||||
learn_tokens=self.cfg["learn_tokens"]
|
||||
)
|
||||
for action, labels in self.moves.labels.items():
|
||||
actions.setdefault(action, {})
|
||||
for label, freq in labels.items():
|
||||
|
|
|
@ -97,6 +97,9 @@ class registry(thinc.registry):
|
|||
models = catalogue.create("spacy", "models", entry_points=True)
|
||||
cli = catalogue.create("spacy", "cli", entry_points=True)
|
||||
|
||||
# We want json loading in the registry, so manually register srsly.read_json.
|
||||
registry.readers("srsly.read_json.v0", srsly.read_json)
|
||||
|
||||
|
||||
class SimpleFrozenDict(dict):
|
||||
"""Simplified implementation of a frozen dict, mainly used as default
|
||||
|
|
Loading…
Reference in New Issue
Block a user