mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
trainable_lemmatizer/entity_linker: add store_activations option
This commit is contained in:
parent
8772b9ccc4
commit
1c9be0d8ab
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
|
||||
import srsly
|
||||
from thinc.api import Config, Model, SequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d, Ints2d
|
||||
from thinc.types import ArrayXd, Floats2d, Ints1d
|
||||
|
||||
from ._edit_tree_internals.edit_trees import EditTrees
|
||||
from ._edit_tree_internals.schemas import validate_edit_tree
|
||||
|
@ -21,6 +21,9 @@ from ..vocab import Vocab
|
|||
from .. import util
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
|
||||
|
||||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.Tagger.v2"
|
||||
|
@ -49,6 +52,7 @@ DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["mo
|
|||
"overwrite": False,
|
||||
"top_k": 1,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
"store_activations": False,
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
|
@ -61,6 +65,7 @@ def make_edit_tree_lemmatizer(
|
|||
overwrite: bool,
|
||||
top_k: int,
|
||||
scorer: Optional[Callable],
|
||||
store_activations: Union[bool, List[str]],
|
||||
):
|
||||
"""Construct an EditTreeLemmatizer component."""
|
||||
return EditTreeLemmatizer(
|
||||
|
@ -72,6 +77,7 @@ def make_edit_tree_lemmatizer(
|
|||
overwrite=overwrite,
|
||||
top_k=top_k,
|
||||
scorer=scorer,
|
||||
store_activations=store_activations,
|
||||
)
|
||||
|
||||
|
||||
|
@ -91,6 +97,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
overwrite: bool = False,
|
||||
top_k: int = 1,
|
||||
scorer: Optional[Callable] = lemmatizer_score,
|
||||
store_activations=False,
|
||||
):
|
||||
"""
|
||||
Construct an edit tree lemmatizer.
|
||||
|
@ -116,6 +123,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
self.cfg: Dict[str, Any] = {"labels": []}
|
||||
self.scorer = scorer
|
||||
self.store_activations = store_activations # type: ignore
|
||||
|
||||
def get_loss(
|
||||
self, examples: Iterable[Example], scores: List[Floats2d]
|
||||
|
@ -144,21 +152,24 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
return float(loss), d_scores
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> List[Ints2d]:
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
n_docs = len(list(docs))
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
n_labels = len(self.cfg["labels"])
|
||||
guesses: List[Ints2d] = [
|
||||
guesses: List[Ints1d] = [
|
||||
self.model.ops.alloc((0,), dtype="i") for doc in docs
|
||||
]
|
||||
scores: List[Floats2d] = [
|
||||
self.model.ops.alloc((0, n_labels), dtype="i") for doc in docs
|
||||
]
|
||||
assert len(guesses) == n_docs
|
||||
return guesses
|
||||
return {"probs": scores, "guesses": guesses}
|
||||
scores = self.model.predict(docs)
|
||||
assert len(scores) == n_docs
|
||||
guesses = self._scores2guesses(docs, scores)
|
||||
assert len(guesses) == n_docs
|
||||
return guesses
|
||||
return {"probs": scores, "guesses": guesses}
|
||||
|
||||
def _scores2guesses(self, docs, scores):
|
||||
guesses = []
|
||||
|
@ -186,8 +197,12 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
return guesses
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], batch_tree_ids):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
|
||||
batch_tree_ids = activations["guesses"]
|
||||
for i, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
doc.activations[self.name][activation] = activations[activation][i]
|
||||
doc_tree_ids = batch_tree_ids[i]
|
||||
if hasattr(doc_tree_ids, "get"):
|
||||
doc_tree_ids = doc_tree_ids.get()
|
||||
|
@ -377,3 +392,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
self.tree2label[tree_id] = len(self.cfg["labels"])
|
||||
self.cfg["labels"].append(tree_id)
|
||||
return self.tree2label[tree_id]
|
||||
|
||||
@property
|
||||
def activations(self):
|
||||
return ["probs", "guesses"]
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
from typing import Optional, Iterable, Callable, Dict, Union, List, Any
|
||||
from thinc.types import Floats2d
|
||||
from typing import cast
|
||||
from numpy import dtype
|
||||
from thinc.types import Floats2d, Ragged
|
||||
from pathlib import Path
|
||||
from itertools import islice
|
||||
import srsly
|
||||
|
@ -21,6 +23,9 @@ from ..util import SimpleFrozenList, registry
|
|||
from .. import util
|
||||
from ..scorer import Scorer
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Ragged], List[str]]]
|
||||
|
||||
# See #9050
|
||||
BACKWARD_OVERWRITE = True
|
||||
|
||||
|
@ -56,6 +61,7 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"overwrite": True,
|
||||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||
"use_gold_ents": True,
|
||||
"store_activations": False,
|
||||
},
|
||||
default_score_weights={
|
||||
"nel_micro_f": 1.0,
|
||||
|
@ -77,6 +83,7 @@ def make_entity_linker(
|
|||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
use_gold_ents: bool,
|
||||
store_activations: Union[bool, List[str]],
|
||||
):
|
||||
"""Construct an EntityLinker component.
|
||||
|
||||
|
@ -121,6 +128,7 @@ def make_entity_linker(
|
|||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
use_gold_ents=use_gold_ents,
|
||||
store_activations=store_activations,
|
||||
)
|
||||
|
||||
|
||||
|
@ -156,6 +164,7 @@ class EntityLinker(TrainablePipe):
|
|||
overwrite: bool = BACKWARD_OVERWRITE,
|
||||
scorer: Optional[Callable] = entity_linker_score,
|
||||
use_gold_ents: bool,
|
||||
store_activations=False,
|
||||
) -> None:
|
||||
"""Initialize an entity linker.
|
||||
|
||||
|
@ -192,6 +201,7 @@ class EntityLinker(TrainablePipe):
|
|||
self.kb = empty_kb(entity_vector_length)(self.vocab)
|
||||
self.scorer = scorer
|
||||
self.use_gold_ents = use_gold_ents
|
||||
self.store_activations = store_activations
|
||||
|
||||
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
|
||||
"""Define the KB of this pipe by providing a function that will
|
||||
|
@ -377,7 +387,7 @@ class EntityLinker(TrainablePipe):
|
|||
loss = loss / len(entity_encodings)
|
||||
return float(loss), out
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> List[str]:
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
Returns the KB IDs for each entity in each doc, including NIL if there is
|
||||
no prediction.
|
||||
|
@ -390,13 +400,21 @@ class EntityLinker(TrainablePipe):
|
|||
self.validate_kb()
|
||||
entity_count = 0
|
||||
final_kb_ids: List[str] = []
|
||||
xp = self.model.ops.xp
|
||||
ops = self.model.ops
|
||||
xp = ops.xp
|
||||
docs_ents: List[Ragged] = []
|
||||
docs_scores: List[Ragged] = []
|
||||
if not docs:
|
||||
return final_kb_ids
|
||||
return {"kb_ids": final_kb_ids, "ents": docs_ents, "scores": docs_scores}
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
for i, doc in enumerate(docs):
|
||||
for doc in docs:
|
||||
doc_ents = []
|
||||
doc_scores = []
|
||||
doc_scores_lens: List[int] = []
|
||||
if len(doc) == 0:
|
||||
doc_scores.append(Ragged(ops.alloc1f(0), ops.alloc1i(0)))
|
||||
doc_ents.append(Ragged(xp.zeros(0, dtype="uint64"), ops.alloc1i(0)))
|
||||
continue
|
||||
sentences = [s for s in doc.sents]
|
||||
# Looping through each entity (TODO: rewrite)
|
||||
|
@ -419,11 +437,17 @@ class EntityLinker(TrainablePipe):
|
|||
if ent.label_ in self.labels_discard:
|
||||
# ignoring this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
self._add_activations(
|
||||
doc_scores, doc_scores_lens, doc_ents, [0.0], [0]
|
||||
)
|
||||
else:
|
||||
candidates = list(self.get_candidates(self.kb, ent))
|
||||
if not candidates:
|
||||
# no prediction possible for this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
self._add_activations(
|
||||
doc_scores, doc_scores_lens, doc_ents, [0.0], [0]
|
||||
)
|
||||
elif len(candidates) == 1:
|
||||
# shortcut for efficiency reasons: take the 1 candidate
|
||||
# TODO: thresholding
|
||||
|
@ -456,30 +480,48 @@ class EntityLinker(TrainablePipe):
|
|||
raise ValueError(Errors.E161)
|
||||
scores = prior_probs + sims - (prior_probs * sims)
|
||||
# TODO: thresholding
|
||||
self._add_activations(
|
||||
doc_scores,
|
||||
doc_scores_lens,
|
||||
doc_ents,
|
||||
scores,
|
||||
[c.entity for c in candidates],
|
||||
)
|
||||
best_index = scores.argmax().item()
|
||||
best_candidate = candidates[best_index]
|
||||
final_kb_ids.append(best_candidate.entity_)
|
||||
self._add_doc_activations(
|
||||
docs_scores, docs_ents, doc_scores, doc_scores_lens, doc_ents
|
||||
)
|
||||
if not (len(final_kb_ids) == entity_count):
|
||||
err = Errors.E147.format(
|
||||
method="predict", msg="result variables not of equal length"
|
||||
)
|
||||
raise RuntimeError(err)
|
||||
return final_kb_ids
|
||||
return {"kb_ids": final_kb_ids, "ents": docs_ents, "scores": docs_scores}
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None:
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
|
||||
activations (List[str]): The activations used for setting annotations, produced
|
||||
by EntityLinker.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/entitylinker#set_annotations
|
||||
"""
|
||||
kb_ids = cast(List[str], activations["kb_ids"])
|
||||
count_ents = len([ent for doc in docs for ent in doc.ents])
|
||||
if count_ents != len(kb_ids):
|
||||
raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
|
||||
i = 0
|
||||
overwrite = self.cfg["overwrite"]
|
||||
for doc in docs:
|
||||
for j, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
# We only copy activations that are Ragged.
|
||||
doc.activations[self.name][activation] = cast(
|
||||
Ragged, activations[activation][j]
|
||||
)
|
||||
for ent in doc.ents:
|
||||
kb_id = kb_ids[i]
|
||||
i += 1
|
||||
|
@ -578,3 +620,30 @@ class EntityLinker(TrainablePipe):
|
|||
|
||||
def add_label(self, label):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def activations(self):
|
||||
return ["ents", "scores"]
|
||||
|
||||
def _add_doc_activations(
|
||||
self, docs_scores, docs_ents, doc_scores, doc_scores_lens, doc_ents
|
||||
):
|
||||
if len(self.store_activations) == 0:
|
||||
return
|
||||
ops = self.model.ops
|
||||
docs_scores.append(
|
||||
Ragged(ops.flatten(doc_scores), ops.asarray1i(doc_scores_lens))
|
||||
)
|
||||
docs_ents.append(
|
||||
Ragged(
|
||||
ops.flatten(doc_ents, dtype="uint64"), ops.asarray1i(doc_scores_lens)
|
||||
)
|
||||
)
|
||||
|
||||
def _add_activations(self, doc_scores, doc_scores_lens, doc_ents, scores, ents):
|
||||
if len(self.store_activations) == 0:
|
||||
return
|
||||
ops = self.model.ops
|
||||
doc_scores.append(ops.asarray1f(scores))
|
||||
doc_scores_lens.append(doc_scores[-1].shape[0])
|
||||
doc_ents.append(ops.xp.array(ents, dtype="uint64"))
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import cast
|
||||
import pickle
|
||||
import pytest
|
||||
from hypothesis import given
|
||||
|
@ -6,6 +7,7 @@ from spacy import util
|
|||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline._edit_tree_internals.edit_trees import EditTrees
|
||||
from spacy.pipeline.trainable_pipe import TrainablePipe
|
||||
from spacy.training import Example
|
||||
from spacy.strings import StringStore
|
||||
from spacy.util import make_tempdir
|
||||
|
@ -278,3 +280,28 @@ def test_empty_strings():
|
|||
no_change = trees.add("xyz", "xyz")
|
||||
empty = trees.add("", "")
|
||||
assert no_change == empty
|
||||
|
||||
|
||||
def test_store_activations():
|
||||
nlp = English()
|
||||
lemmatizer = cast(TrainablePipe, nlp.add_pipe("trainable_lemmatizer"))
|
||||
lemmatizer.min_tree_freq = 1
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
nO = lemmatizer.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["trainable_lemmatizer"].keys())) == 0
|
||||
|
||||
lemmatizer.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["trainable_lemmatizer"].keys()) == ["probs", "guesses"]
|
||||
assert doc.activations["trainable_lemmatizer"]["probs"].shape == (5, nO)
|
||||
assert doc.activations["trainable_lemmatizer"]["guesses"].shape == (5,)
|
||||
|
||||
lemmatizer.store_activations = ["probs"]
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["trainable_lemmatizer"].keys()) == ["probs"]
|
||||
assert doc.activations["trainable_lemmatizer"]["probs"].shape == (5, nO)
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from typing import Callable, Iterable
|
||||
from typing import Callable, Iterable, cast
|
||||
|
||||
import pytest
|
||||
from numpy.testing import assert_equal
|
||||
from thinc.types import Ragged
|
||||
|
||||
from spacy import registry, util
|
||||
from spacy.attrs import ENT_KB_ID
|
||||
|
@ -9,7 +10,7 @@ from spacy.compat import pickle
|
|||
from spacy.kb import Candidate, KnowledgeBase, get_candidates
|
||||
from spacy.lang.en import English
|
||||
from spacy.ml import load_kb
|
||||
from spacy.pipeline import EntityLinker
|
||||
from spacy.pipeline import EntityLinker, TrainablePipe
|
||||
from spacy.pipeline.legacy import EntityLinker_v1
|
||||
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||
from spacy.scorer import Scorer
|
||||
|
@ -1115,3 +1116,79 @@ def test_tokenization_mismatch():
|
|||
|
||||
nlp.add_pipe("sentencizer", first=True)
|
||||
results = nlp.evaluate(train_examples)
|
||||
|
||||
|
||||
def test_store_activations():
|
||||
nlp = English()
|
||||
vector_length = 3
|
||||
assert "Q2146908" not in nlp.vocab.strings
|
||||
|
||||
# Convert the texts to docs to make sure we have doc.ents set for the training examples
|
||||
train_examples = []
|
||||
for text, annotation in TRAIN_DATA:
|
||||
doc = nlp(text)
|
||||
train_examples.append(Example.from_dict(doc, annotation))
|
||||
|
||||
def create_kb(vocab):
|
||||
# create artificial KB - assign same prior weight to the two russ cochran's
|
||||
# Q2146908 (Russ Cochran): American golfer
|
||||
# Q7381115 (Russ Cochran): publisher
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
||||
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
||||
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
|
||||
mykb.add_alias(
|
||||
alias="Russ Cochran",
|
||||
entities=["Q2146908", "Q7381115"],
|
||||
probabilities=[0.5, 0.5],
|
||||
)
|
||||
return mykb
|
||||
|
||||
# Create the Entity Linker component and add it to the pipeline
|
||||
entity_linker = cast(TrainablePipe, nlp.add_pipe("entity_linker", last=True))
|
||||
assert isinstance(entity_linker, EntityLinker)
|
||||
entity_linker.set_kb(create_kb)
|
||||
assert "Q2146908" in entity_linker.vocab.strings
|
||||
assert "Q2146908" in entity_linker.kb.vocab.strings
|
||||
|
||||
# initialize the NEL pipe
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
nO = entity_linker.model.get_dim("nO")
|
||||
|
||||
nlp.add_pipe("sentencizer", first=True)
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
||||
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert len(doc.activations["entity_linker"].keys()) == 0
|
||||
|
||||
entity_linker.store_activations = True
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"}
|
||||
ents = doc.activations["entity_linker"]["ents"]
|
||||
assert isinstance(ents, Ragged)
|
||||
assert ents.data.shape == (2, 1)
|
||||
assert ents.data.dtype == "uint64"
|
||||
assert ents.lengths.shape == (1,)
|
||||
scores = doc.activations["entity_linker"]["scores"]
|
||||
assert isinstance(scores, Ragged)
|
||||
assert scores.data.shape == (2, 1)
|
||||
assert scores.data.dtype == "float32"
|
||||
assert scores.lengths.shape == (1,)
|
||||
|
||||
entity_linker.store_activations = ["scores"]
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert set(doc.activations["entity_linker"].keys()) == {"scores"}
|
||||
scores = doc.activations["entity_linker"]["scores"]
|
||||
assert isinstance(scores, Ragged)
|
||||
assert scores.data.shape == (2, 1)
|
||||
assert scores.data.dtype == "float32"
|
||||
assert scores.lengths.shape == (1,)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Callable, Protocol, Iterable, Iterator, Optional
|
||||
from typing import Union, Tuple, List, Dict, Any, overload
|
||||
from cymem.cymem import Pool
|
||||
from thinc.types import ArrayXd, Floats1d, Floats2d, Ints2d
|
||||
from thinc.types import ArrayXd, Floats1d, Floats2d, Ints2d, Ragged
|
||||
from .span import Span
|
||||
from .token import Token
|
||||
from ._dict_proxies import SpanGroups
|
||||
|
@ -22,7 +22,7 @@ class Doc:
|
|||
max_length: int
|
||||
length: int
|
||||
sentiment: float
|
||||
activations: Dict[str, Dict[str, ArrayXd]]
|
||||
activations: Dict[str, Dict[str, Union[ArrayXd, Ragged]]]
|
||||
cats: Dict[str, float]
|
||||
user_hooks: Dict[str, Callable[..., Any]]
|
||||
user_token_hooks: Dict[str, Callable[..., Any]]
|
||||
|
|
Loading…
Reference in New Issue
Block a user