mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-21 17:41:59 +03:00
initial
This commit is contained in:
parent
f0e0206b77
commit
1cbad4f3c9
533
website/docs/api/curated-transformer.mdx
Normal file
533
website/docs/api/curated-transformer.mdx
Normal file
|
@ -0,0 +1,533 @@
|
|||
---
|
||||
title: CuratedTransformer
|
||||
teaser: Pipeline component for multi-task learning with transformer models
|
||||
tag: class
|
||||
source: github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/pipeline_component.py
|
||||
version: 3
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: transformer
|
||||
---
|
||||
|
||||
> #### Installation
|
||||
>
|
||||
> ```bash
|
||||
> $ pip install -U spacy-curated-transformers
|
||||
> ```
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This component is available via the extension package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers). It
|
||||
exposes the component via entry points, so if you have the package installed,
|
||||
using `factory = "curated_transformer"` in your
|
||||
[training config](/usage/training#config) or `nlp.add_pipe("curated_transformer")` will
|
||||
work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
This Python package provides a curated set of transformer models for spaCy. It is focused on deep integration into spaCy and will support deployment-focused features such as distillation and quantization. Curated transformers currently supports the following model types:
|
||||
|
||||
* ALBERT
|
||||
* BERT
|
||||
* CamemBERT
|
||||
* RoBERTa
|
||||
* XLM-RoBERTa
|
||||
|
||||
You will usually connect downstream components to a shared curated transformer using one of the curated transformer listener layers. This works similarly to spaCy's [Tok2Vec](/api/tok2vec), and the [Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer.
|
||||
|
||||
Supporting a wide variety of transformer models is a non-goal. If you want to use another type of model, use [spacy-transformers](/api/spacy-transformers), which allows you to use Hugging Face transformers models with spaCy.
|
||||
|
||||
The component assigns the output of the transformer to the `Doc`'s extension
|
||||
attributes. We also calculate an alignment between the word-piece tokens and the
|
||||
spaCy tokenization, so that we can use the last hidden states to set the
|
||||
`Doc.tensor` attribute. When multiple word-piece tokens align to the same spaCy
|
||||
token, the spaCy token receives the sum of their values. To access the values,
|
||||
you can use the custom [`Doc._.trf_data`](#assigned-attributes) attribute.
|
||||
|
||||
For more details, see the [usage documentation](/usage/embeddings-transformers).
|
||||
|
||||
## Assigned Attributes {id="assigned-attributes"}
|
||||
|
||||
The component sets the following
|
||||
[custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
|
||||
|
||||
| Location | Value |
|
||||
| ---------------- | ------------------------------------------------------------------------ |
|
||||
| `Doc._.trf_data` | CuratedTransformer tokens and outputs for the `Doc` object. ~~DocTransformerOutput~~ |
|
||||
|
||||
## Config and implementation {id="config"}
|
||||
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config). See the
|
||||
[model architectures](/api/architectures#transformers) documentation for details
|
||||
on the transformer architectures and their arguments and hyperparameters.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG
|
||||
>
|
||||
> DEFAULT_CONFIG["transformer"]["model"]["vocab_size"] = 250002
|
||||
> nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG["transformer"])
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [CuratedTransformerModel](/api/architectures#CuratedTransformerModel). ~~Model[List[Doc], FullCuratedTransformerBatch]~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
```python
|
||||
https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
|
||||
```
|
||||
|
||||
## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
>
|
||||
> # Construction via add_pipe with custom config
|
||||
> config = {
|
||||
> "model": {
|
||||
> "@architectures": "spacy-curated-transformers.XlmrTransformer.v1",
|
||||
> "vocab_size": 250002,
|
||||
> "num_hidden_layers": 12,
|
||||
> "hidden_width": 768
|
||||
> "piece_encoder": {
|
||||
> "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1"
|
||||
> }
|
||||
> }
|
||||
> }
|
||||
> trf = nlp.add_pipe("curated_transformer", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy_curated_transformers import CuratedTransformer
|
||||
> trf = CuratedTransformer(nlp.vocab, model)
|
||||
> ```
|
||||
|
||||
Construct a `CuratedTransformer` component. One or more subsequent spaCy components can
|
||||
use the transformer outputs as features in its model, with gradients
|
||||
backpropagated to the single shared weights. The activations from the
|
||||
transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
|
||||
attribute. You can also provide a callback to set additional annotations. In
|
||||
your application, you would normally use a shortcut for this and instantiate the
|
||||
component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Description |
|
||||
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | One of the supported pre-trained transformer models. ~~Model~~ |
|
||||
| _keyword-only_ | |
|
||||
| `name` | The component instance name. ~~str~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/transformer#call) and [`pipe`](/api/transformer#pipe) delegate
|
||||
to the [`predict`](/api/transformer#predict) and
|
||||
[`set_annotations`](/api/transformer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("This is a sentence.")
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> # This usually happens under the hood
|
||||
> processed = transformer(doc)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------- |
|
||||
| `doc` | The document to process. ~~Doc~~ |
|
||||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||
|
||||
## CuratedTransformer.pipe {id="pipe",tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/transformer#call) and
|
||||
[`pipe`](/api/transformer#pipe) delegate to the
|
||||
[`predict`](/api/transformer#predict) and
|
||||
[`set_annotations`](/api/transformer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> for doc in trf.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------- |
|
||||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## CuratedTransformer.initialize {id="initialize",tag="method"}
|
||||
|
||||
Initialize the component for training and return an
|
||||
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
|
||||
function that returns an iterable of [`Example`](/api/example) objects. **At
|
||||
least one example should be supplied.** The data examples are used to
|
||||
**initialize the model** of the component and can either be the full training
|
||||
data or a representative sample. Initialization includes validating the network,
|
||||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||||
setting up the label scheme based on the data. This method is typically called
|
||||
by [`Language.initialize`](/api/language#initialize).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.initialize(lambda: examples, nlp=nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
| `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~ |
|
||||
| `piece_loader` | Initialization callback for the input piece encoder. ~~Optional[Callable]~~ |
|
||||
|
||||
## CuratedTransformer.predict {id="predict",tag="method"}
|
||||
|
||||
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
|
||||
modifying them.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> scores = trf.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------- |
|
||||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The model's prediction for each document. |
|
||||
|
||||
## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
|
||||
|
||||
Assign the extracted features to the `Doc` objects. By default, the
|
||||
[`DocTransformerOutput`](/api/curated-transformer#doctransformeroutput) object is written to the
|
||||
[`Doc._.trf_data`](#assigned-attributes) attribute. Your `set_extra_annotations`
|
||||
callback is then called, if provided.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> scores = trf.predict(docs)
|
||||
> trf.set_annotations(docs, scores)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ----------------------------------------------------- |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
|
||||
|
||||
## CuratedTransformer.update {id="update",tag="method"}
|
||||
|
||||
Prepare for an update to the transformer.
|
||||
|
||||
Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component is unusual
|
||||
in that it does not receive "gold standard" annotations to calculate
|
||||
a weight update. The optimal output of the transformer data is unknown;
|
||||
it's a hidden layer inside the network that is updated by backpropagating
|
||||
from output layers.
|
||||
|
||||
The `CuratedTransformer` component therefore does not perform a weight update
|
||||
during its own `update` method. Instead, it runs its transformer model
|
||||
and communicates the output and the backpropagation callback to any
|
||||
downstream components that have been connected to it via the
|
||||
TransformerListener sublayer. If there are multiple listeners, the last
|
||||
layer will actually backprop to the transformer and call the optimizer,
|
||||
while the others simply increment the gradients.
|
||||
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> optimizer = nlp.initialize()
|
||||
> losses = trf.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> optimizer = trf.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------- |
|
||||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||
|
||||
## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model to use the given parameter values. At the end of the
|
||||
context, the original parameters are restored.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> with trf.use_params(optimizer.averages):
|
||||
> trf.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | -------------------------------------------------- |
|
||||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||
|
||||
## CuratedTransformer.to_disk {id="to_disk",tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.to_disk("/path/to/transformer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
|
||||
## CuratedTransformer.from_disk {id="from_disk",tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.from_disk("/path/to/transformer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf_bytes = trf.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ |
|
||||
|
||||
## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf_bytes = trf.to_bytes()
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.from_bytes(trf_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## Serialization fields {id="serialization-fields"}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = trf.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
|
||||
## DocTransformerOutput {id="transformerdata",tag="dataclass"}
|
||||
|
||||
CuratedTransformer tokens and outputs for one `Doc` object. The transformer models
|
||||
return tensors that refer to a whole padded batch of documents. These tensors
|
||||
are wrapped into the
|
||||
[FullCuratedTransformerBatch](/api/transformer#fulltransformerbatch) object. The
|
||||
`FullCuratedTransformerBatch` then splits out the per-document data, which is handled
|
||||
by this class. Instances of this class are typically assigned to the
|
||||
[`Doc._.trf_data`](/api/transformer#assigned-attributes) extension attribute.
|
||||
|
||||
| Name | Description |
|
||||
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `tokens` | A slice of the tokens data produced by the tokenizer. This may have several fields, including the token IDs, the texts and the attention mask. See the [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) object for details. ~~dict~~ |
|
||||
| `model_output` | The model output from the transformer model, determined by the model and transformer config. New in `spacy-transformers` v1.1.0. ~~transformers.file_utils.ModelOutput~~ |
|
||||
| `tensors` | The `model_output` in the earlier `transformers` tuple format converted using [`ModelOutput.to_tuple()`](https://huggingface.co/transformers/main_classes/output.html#transformers.file_utils.ModelOutput.to_tuple). Returns `Tuple` instead of `List` as of `spacy-transformers` v1.1.0. ~~Tuple[Union[FloatsXd, List[FloatsXd]]]~~ |
|
||||
| `align` | Alignment from the `Doc`'s tokenization to the wordpieces. This is a ragged array, where `align.lengths[i]` indicates the number of wordpiece tokens that token `i` aligns against. The actual indices are provided at `align[i].dataXd`. ~~Ragged~~ |
|
||||
| `width` | The width of the last hidden layer. ~~int~~ |
|
||||
|
||||
### DocTransformerOutput.empty {id="transformerdata-emoty",tag="classmethod"}
|
||||
|
||||
Create an empty `DocTransformerOutput` container.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------- |
|
||||
| **RETURNS** | The container. ~~DocTransformerOutput~~ |
|
||||
|
||||
|
||||
## Span getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
|
||||
|
||||
Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
|
||||
return a lists of [`Span`](/api/span) objects for each doc to be processed by
|
||||
the transformer. This is used to manage long documents by cutting them into
|
||||
smaller sequences before running the transformer. The spans are allowed to
|
||||
overlap, and you can also omit sections of the `Doc` if they are not relevant. Span getters can be referenced in the `[components.transformer.model.with_spans]`
|
||||
block of the config to customize the sequences processed by the transformer.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------- |
|
||||
| `docs` | A batch of `Doc` objects. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
|
||||
|
||||
|
||||
### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [transformer.model.with_spans]
|
||||
> @architectures = "spacy-curated-transformers.WithStridedSpans.v1"
|
||||
> stride = 96
|
||||
> window = 128
|
||||
> ```
|
||||
|
||||
Create a span getter for strided spans. If you set the `window` and `stride` to
|
||||
the same value, the spans will cover each token once. Setting `stride` lower
|
||||
than `window` will allow for an overlap, so that some tokens are counted twice.
|
||||
This can be desirable, because it allows all tokens to have both a left and
|
||||
right context.
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ------------------------ |
|
||||
| `window` | The window size. ~~int~~ |
|
||||
| `stride` | The stride size. ~~int~~ |
|
||||
|
||||
## Tokenizer loaders
|
||||
|
||||
Placeholder text for tokenizers
|
||||
|
||||
### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a Byte-BPE piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|---------------|---------------------------------------|
|
||||
| `vocab_path` | Path to the vocabulary file. ~~Path~~ |
|
||||
| `merges_path` | Path to the merges file. ~~Path~~ |
|
||||
|
||||
### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a character piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|-------------|-----------------------------------------------------------------------------|
|
||||
| `path` | Path to the serialized character model. ~~Path~~ |
|
||||
| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
|
||||
| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ |
|
||||
| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
|
||||
| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ |
|
||||
| `vocab` | The shared vocabulary to use. ~~Optional[Vocab]~~ |
|
||||
|
||||
|
||||
### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a HuggingFace piece encoder model. Used in conjunction with the HuggingFace model loader.
|
||||
|
||||
| Name | Description |
|
||||
|------------|--------------------------------------------|
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
|
||||
### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a SentencePiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|--------|------------------------------------------------------|
|
||||
| `path` | Path to the serialized SentencePiece model. ~~Path~~ |
|
||||
|
||||
### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a WordPiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
|--------|--------------------------------------------------|
|
||||
| `path` | Path to the serialized WordPiece model. ~~Path~~ |
|
||||
|
||||
## Model Loaders
|
||||
|
||||
### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights from a corresponding HuggingFace model.
|
||||
|
||||
| Name | Description |
|
||||
|------------|--------------------------------------------|
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights from a PyTorch checkpoint.
|
||||
|
||||
| Name | Description |
|
||||
|--------|------------------------------------------|
|
||||
| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
|
||||
|
Loading…
Reference in New Issue
Block a user