mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	initial
This commit is contained in:
		
							parent
							
								
									f0e0206b77
								
							
						
					
					
						commit
						1cbad4f3c9
					
				
							
								
								
									
										533
									
								
								website/docs/api/curated-transformer.mdx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										533
									
								
								website/docs/api/curated-transformer.mdx
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,533 @@
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: CuratedTransformer
 | 
				
			||||||
 | 
					teaser: Pipeline component for multi-task learning with transformer models
 | 
				
			||||||
 | 
					tag: class
 | 
				
			||||||
 | 
					source: github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/pipeline_component.py
 | 
				
			||||||
 | 
					version: 3
 | 
				
			||||||
 | 
					api_base_class: /api/pipe
 | 
				
			||||||
 | 
					api_string_name: transformer
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Installation
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```bash
 | 
				
			||||||
 | 
					> $ pip install -U spacy-curated-transformers
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<Infobox title="Important note" variant="warning">
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This component is available via the extension package
 | 
				
			||||||
 | 
					[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers). It
 | 
				
			||||||
 | 
					exposes the component via entry points, so if you have the package installed,
 | 
				
			||||||
 | 
					using `factory = "curated_transformer"` in your
 | 
				
			||||||
 | 
					[training config](/usage/training#config) or `nlp.add_pipe("curated_transformer")` will
 | 
				
			||||||
 | 
					work out-of-the-box.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</Infobox>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This Python package provides a curated set of transformer models for spaCy. It is focused on deep integration into spaCy and will support deployment-focused features such as distillation and quantization. Curated transformers currently supports the following model types:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* ALBERT
 | 
				
			||||||
 | 
					* BERT
 | 
				
			||||||
 | 
					* CamemBERT
 | 
				
			||||||
 | 
					* RoBERTa
 | 
				
			||||||
 | 
					* XLM-RoBERTa
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					You will usually connect downstream components to a shared curated transformer using one of the curated transformer listener layers. This works similarly to spaCy's [Tok2Vec](/api/tok2vec), and the [Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Supporting a wide variety of transformer models is a non-goal. If you want to use another type of model, use [spacy-transformers](/api/spacy-transformers), which allows you to use Hugging Face transformers models with spaCy.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The component assigns the output of the transformer to the `Doc`'s extension
 | 
				
			||||||
 | 
					attributes. We also calculate an alignment between the word-piece tokens and the
 | 
				
			||||||
 | 
					spaCy tokenization, so that we can use the last hidden states to set the
 | 
				
			||||||
 | 
					`Doc.tensor` attribute. When multiple word-piece tokens align to the same spaCy
 | 
				
			||||||
 | 
					token, the spaCy token receives the sum of their values. To access the values,
 | 
				
			||||||
 | 
					you can use the custom [`Doc._.trf_data`](#assigned-attributes) attribute.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For more details, see the [usage documentation](/usage/embeddings-transformers).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Assigned Attributes {id="assigned-attributes"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The component sets the following
 | 
				
			||||||
 | 
					[custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Location         | Value                                                                    |
 | 
				
			||||||
 | 
					| ---------------- | ------------------------------------------------------------------------ |
 | 
				
			||||||
 | 
					| `Doc._.trf_data` | CuratedTransformer tokens and outputs for the `Doc` object. ~~DocTransformerOutput~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Config and implementation {id="config"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The default config is defined by the pipeline component factory and describes
 | 
				
			||||||
 | 
					how the component should be configured. You can override its settings via the
 | 
				
			||||||
 | 
					`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | 
				
			||||||
 | 
					[`config.cfg` for training](/usage/training#config). See the
 | 
				
			||||||
 | 
					[model architectures](/api/architectures#transformers) documentation for details
 | 
				
			||||||
 | 
					on the transformer architectures and their arguments and hyperparameters.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> DEFAULT_CONFIG["transformer"]["model"]["vocab_size"] = 250002
 | 
				
			||||||
 | 
					> nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG["transformer"])
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Setting             | Description                                                                                                                                                                                                                                        |
 | 
				
			||||||
 | 
					|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 | 
				
			||||||
 | 
					| `model`             | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [CuratedTransformerModel](/api/architectures#CuratedTransformerModel). ~~Model[List[Doc], FullCuratedTransformerBatch]~~                                                     |
 | 
				
			||||||
 | 
					| `frozen`            | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~                                                                                                                                                            |
 | 
				
			||||||
 | 
					| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> # Construction via add_pipe with default model
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> # Construction via add_pipe with custom config
 | 
				
			||||||
 | 
					> config = {
 | 
				
			||||||
 | 
					>     "model": {
 | 
				
			||||||
 | 
					>         "@architectures": "spacy-curated-transformers.XlmrTransformer.v1",
 | 
				
			||||||
 | 
					>         "vocab_size": 250002,
 | 
				
			||||||
 | 
					>         "num_hidden_layers": 12,
 | 
				
			||||||
 | 
					>         "hidden_width": 768
 | 
				
			||||||
 | 
					>         "piece_encoder": {
 | 
				
			||||||
 | 
					>             "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1"
 | 
				
			||||||
 | 
					>         }
 | 
				
			||||||
 | 
					>     }
 | 
				
			||||||
 | 
					> }
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer", config=config)
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> # Construction from class
 | 
				
			||||||
 | 
					> from spacy_curated_transformers import CuratedTransformer
 | 
				
			||||||
 | 
					> trf = CuratedTransformer(nlp.vocab, model)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a `CuratedTransformer` component. One or more subsequent spaCy components can
 | 
				
			||||||
 | 
					use the transformer outputs as features in its model, with gradients
 | 
				
			||||||
 | 
					backpropagated to the single shared weights. The activations from the
 | 
				
			||||||
 | 
					transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
 | 
				
			||||||
 | 
					attribute. You can also provide a callback to set additional annotations. In
 | 
				
			||||||
 | 
					your application, you would normally use a shortcut for this and instantiate the
 | 
				
			||||||
 | 
					component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name                | Description                                                                                                                                                                                                                                        |
 | 
				
			||||||
 | 
					|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 | 
				
			||||||
 | 
					| `vocab`             | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                                   |
 | 
				
			||||||
 | 
					| `model`             | One of the supported pre-trained transformer models. ~~Model~~                                                                                                                                                                                     |
 | 
				
			||||||
 | 
					| _keyword-only_      |                                                                                                                                                                                                                                                    |
 | 
				
			||||||
 | 
					| `name`              | The component instance name. ~~str~~                                                                                                                                                                                                               |
 | 
				
			||||||
 | 
					| `frozen`            | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~                                                                                                                                                            |
 | 
				
			||||||
 | 
					| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Apply the pipe to one document. The document is modified in place, and returned.
 | 
				
			||||||
 | 
					This usually happens under the hood when the `nlp` object is called on a text
 | 
				
			||||||
 | 
					and all pipeline components are applied to the `Doc` in order. Both
 | 
				
			||||||
 | 
					[`__call__`](/api/transformer#call) and [`pipe`](/api/transformer#pipe) delegate
 | 
				
			||||||
 | 
					to the [`predict`](/api/transformer#predict) and
 | 
				
			||||||
 | 
					[`set_annotations`](/api/transformer#set_annotations) methods.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> doc = nlp("This is a sentence.")
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> # This usually happens under the hood
 | 
				
			||||||
 | 
					> processed = transformer(doc)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name        | Description                      |
 | 
				
			||||||
 | 
					| ----------- | -------------------------------- |
 | 
				
			||||||
 | 
					| `doc`       | The document to process. ~~Doc~~ |
 | 
				
			||||||
 | 
					| **RETURNS** | The processed document. ~~Doc~~  |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.pipe {id="pipe",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Apply the pipe to a stream of documents. This usually happens under the hood
 | 
				
			||||||
 | 
					when the `nlp` object is called on a text and all pipeline components are
 | 
				
			||||||
 | 
					applied to the `Doc` in order. Both [`__call__`](/api/transformer#call) and
 | 
				
			||||||
 | 
					[`pipe`](/api/transformer#pipe) delegate to the
 | 
				
			||||||
 | 
					[`predict`](/api/transformer#predict) and
 | 
				
			||||||
 | 
					[`set_annotations`](/api/transformer#set_annotations) methods.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> for doc in trf.pipe(docs, batch_size=50):
 | 
				
			||||||
 | 
					>     pass
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                   |
 | 
				
			||||||
 | 
					| -------------- | ------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | 
				
			||||||
 | 
					| _keyword-only_ |                                                               |
 | 
				
			||||||
 | 
					| `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | 
				
			||||||
 | 
					| **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.initialize {id="initialize",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Initialize the component for training and return an
 | 
				
			||||||
 | 
					[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
 | 
				
			||||||
 | 
					function that returns an iterable of [`Example`](/api/example) objects. **At
 | 
				
			||||||
 | 
					least one example should be supplied.** The data examples are used to
 | 
				
			||||||
 | 
					**initialize the model** of the component and can either be the full training
 | 
				
			||||||
 | 
					data or a representative sample. Initialization includes validating the network,
 | 
				
			||||||
 | 
					[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | 
				
			||||||
 | 
					setting up the label scheme based on the data. This method is typically called
 | 
				
			||||||
 | 
					by [`Language.initialize`](/api/language#initialize).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> trf.initialize(lambda: examples, nlp=nlp)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name             | Description                                                                                                                                                                |
 | 
				
			||||||
 | 
					|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 | 
				
			||||||
 | 
					| `get_examples`   | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
 | 
				
			||||||
 | 
					| _keyword-only_   |                                                                                                                                                                            |
 | 
				
			||||||
 | 
					| `nlp`            | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                       |
 | 
				
			||||||
 | 
					| `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~                                                                                                  |
 | 
				
			||||||
 | 
					| `piece_loader`   | Initialization callback for the input piece encoder. ~~Optional[Callable]~~                                                                                                |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.predict {id="predict",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Apply the component's model to a batch of [`Doc`](/api/doc) objects without
 | 
				
			||||||
 | 
					modifying them.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> scores = trf.predict([doc1, doc2])
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name        | Description                                 |
 | 
				
			||||||
 | 
					| ----------- | ------------------------------------------- |
 | 
				
			||||||
 | 
					| `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | 
				
			||||||
 | 
					| **RETURNS** | The model's prediction for each document.   |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Assign the extracted features to the `Doc` objects. By default, the
 | 
				
			||||||
 | 
					[`DocTransformerOutput`](/api/curated-transformer#doctransformeroutput) object is written to the
 | 
				
			||||||
 | 
					[`Doc._.trf_data`](#assigned-attributes) attribute. Your `set_extra_annotations`
 | 
				
			||||||
 | 
					callback is then called, if provided.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> scores = trf.predict(docs)
 | 
				
			||||||
 | 
					> trf.set_annotations(docs, scores)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name     | Description                                           |
 | 
				
			||||||
 | 
					| -------- | ----------------------------------------------------- |
 | 
				
			||||||
 | 
					| `docs`   | The documents to modify. ~~Iterable[Doc]~~            |
 | 
				
			||||||
 | 
					| `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.update {id="update",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Prepare for an update to the transformer.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component is unusual
 | 
				
			||||||
 | 
					in that it does not receive "gold standard" annotations to calculate
 | 
				
			||||||
 | 
					a weight update. The optimal output of the transformer data is unknown;
 | 
				
			||||||
 | 
					it's a hidden layer inside the network that is updated by backpropagating
 | 
				
			||||||
 | 
					from output layers.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The `CuratedTransformer` component therefore does not perform a weight update
 | 
				
			||||||
 | 
					during its own `update` method. Instead, it runs its transformer model
 | 
				
			||||||
 | 
					and communicates the output and the backpropagation callback to any
 | 
				
			||||||
 | 
					downstream components that have been connected to it via the
 | 
				
			||||||
 | 
					TransformerListener sublayer. If there are multiple listeners, the last
 | 
				
			||||||
 | 
					layer will actually backprop to the transformer and call the optimizer,
 | 
				
			||||||
 | 
					while the others simply increment the gradients.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> optimizer = nlp.initialize()
 | 
				
			||||||
 | 
					> losses = trf.update(examples, sgd=optimizer)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                                                                                                                                      |
 | 
				
			||||||
 | 
					| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `examples`     | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
 | 
				
			||||||
 | 
					| _keyword-only_ |                                                                                                                                                                                  |
 | 
				
			||||||
 | 
					| `drop`         | The dropout rate. ~~float~~                                                                                                                                                      |
 | 
				
			||||||
 | 
					| `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                                                                    |
 | 
				
			||||||
 | 
					| `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~                                                         |
 | 
				
			||||||
 | 
					| **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                                                                            |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Create an optimizer for the pipeline component.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> optimizer = trf.create_optimizer()
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name        | Description                  |
 | 
				
			||||||
 | 
					| ----------- | ---------------------------- |
 | 
				
			||||||
 | 
					| **RETURNS** | The optimizer. ~~Optimizer~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Modify the pipe's model to use the given parameter values. At the end of the
 | 
				
			||||||
 | 
					context, the original parameters are restored.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> with trf.use_params(optimizer.averages):
 | 
				
			||||||
 | 
					>     trf.to_disk("/best_model")
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name     | Description                                        |
 | 
				
			||||||
 | 
					| -------- | -------------------------------------------------- |
 | 
				
			||||||
 | 
					| `params` | The parameter values to use in the model. ~~dict~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.to_disk {id="to_disk",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Serialize the pipe to disk.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> trf.to_disk("/path/to/transformer")
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                                                                                                |
 | 
				
			||||||
 | 
					| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
				
			||||||
 | 
					| `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
				
			||||||
 | 
					| _keyword-only_ |                                                                                                                                            |
 | 
				
			||||||
 | 
					| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.from_disk {id="from_disk",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Load the pipe from disk. Modifies the object in place and returns it.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> trf.from_disk("/path/to/transformer")
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                                                     |
 | 
				
			||||||
 | 
					| -------------- | ----------------------------------------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
				
			||||||
 | 
					| _keyword-only_ |                                                                                                 |
 | 
				
			||||||
 | 
					| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | 
				
			||||||
 | 
					| **RETURNS**    | The modified `CuratedTransformer` object. ~~CuratedTransformer~~                                              |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> trf_bytes = trf.to_bytes()
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Serialize the pipe to a bytestring.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                                                 |
 | 
				
			||||||
 | 
					| -------------- | ------------------------------------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| _keyword-only_ |                                                                                             |
 | 
				
			||||||
 | 
					| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
				
			||||||
 | 
					| **RETURNS**    | The serialized form of the `CuratedTransformer` object. ~~bytes~~                                  |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> trf_bytes = trf.to_bytes()
 | 
				
			||||||
 | 
					> trf = nlp.add_pipe("curated_transformer")
 | 
				
			||||||
 | 
					> trf.from_bytes(trf_bytes)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                                                 |
 | 
				
			||||||
 | 
					| -------------- | ------------------------------------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | 
				
			||||||
 | 
					| _keyword-only_ |                                                                                             |
 | 
				
			||||||
 | 
					| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
				
			||||||
 | 
					| **RETURNS**    | The `CuratedTransformer` object. ~~CuratedTransformer~~                                                   |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Serialization fields {id="serialization-fields"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					During serialization, spaCy will export several data fields used to restore
 | 
				
			||||||
 | 
					different aspects of the object. If needed, you can exclude them from
 | 
				
			||||||
 | 
					serialization by passing in the string names via the `exclude` argument.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> data = trf.to_disk("/path", exclude=["vocab"])
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name    | Description                                                    |
 | 
				
			||||||
 | 
					| ------- | -------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | 
				
			||||||
 | 
					| `cfg`   | The config file. You usually don't want to exclude this.       |
 | 
				
			||||||
 | 
					| `model` | The binary model data. You usually don't want to exclude this. |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## DocTransformerOutput {id="transformerdata",tag="dataclass"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					CuratedTransformer tokens and outputs for one `Doc` object. The transformer models
 | 
				
			||||||
 | 
					return tensors that refer to a whole padded batch of documents. These tensors
 | 
				
			||||||
 | 
					are wrapped into the
 | 
				
			||||||
 | 
					[FullCuratedTransformerBatch](/api/transformer#fulltransformerbatch) object. The
 | 
				
			||||||
 | 
					`FullCuratedTransformerBatch` then splits out the per-document data, which is handled
 | 
				
			||||||
 | 
					by this class. Instances of this class are typically assigned to the
 | 
				
			||||||
 | 
					[`Doc._.trf_data`](/api/transformer#assigned-attributes) extension attribute.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name           | Description                                                                                                                                                                                                                                                                                                                          |
 | 
				
			||||||
 | 
					|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 | 
				
			||||||
 | 
					| `tokens`       | A slice of the tokens data produced by the tokenizer. This may have several fields, including the token IDs, the texts and the attention mask. See the [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) object for details. ~~dict~~                       |
 | 
				
			||||||
 | 
					| `model_output` | The model output from the transformer model, determined by the model and transformer config. New in `spacy-transformers` v1.1.0. ~~transformers.file_utils.ModelOutput~~                                                                                                                                                             |
 | 
				
			||||||
 | 
					| `tensors`      | The `model_output` in the earlier `transformers` tuple format converted using [`ModelOutput.to_tuple()`](https://huggingface.co/transformers/main_classes/output.html#transformers.file_utils.ModelOutput.to_tuple). Returns `Tuple` instead of `List` as of `spacy-transformers` v1.1.0. ~~Tuple[Union[FloatsXd, List[FloatsXd]]]~~ |
 | 
				
			||||||
 | 
					| `align`        | Alignment from the `Doc`'s tokenization to the wordpieces. This is a ragged array, where `align.lengths[i]` indicates the number of wordpiece tokens that token `i` aligns against. The actual indices are provided at `align[i].dataXd`. ~~Ragged~~                                                                                 |
 | 
				
			||||||
 | 
					| `width`        | The width of the last hidden layer. ~~int~~                                                                                                                                                                                                                                                                                          |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### DocTransformerOutput.empty {id="transformerdata-emoty",tag="classmethod"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Create an empty `DocTransformerOutput` container.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name        | Description                        |
 | 
				
			||||||
 | 
					| ----------- | ---------------------------------- |
 | 
				
			||||||
 | 
					| **RETURNS** | The container. ~~DocTransformerOutput~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Span getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
 | 
				
			||||||
 | 
					return a lists of [`Span`](/api/span) objects for each doc to be processed by
 | 
				
			||||||
 | 
					the transformer. This is used to manage long documents by cutting them into
 | 
				
			||||||
 | 
					smaller sequences before running the transformer. The spans are allowed to
 | 
				
			||||||
 | 
					overlap, and you can also omit sections of the `Doc` if they are not relevant. Span getters can be referenced in the `[components.transformer.model.with_spans]`
 | 
				
			||||||
 | 
					block of the config to customize the sequences processed by the transformer.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name        | Description                                                   |
 | 
				
			||||||
 | 
					| ----------- | ------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `docs`      | A batch of `Doc` objects. ~~Iterable[Doc]~~                   |
 | 
				
			||||||
 | 
					| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example config
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```ini
 | 
				
			||||||
 | 
					> [transformer.model.with_spans]
 | 
				
			||||||
 | 
					> @architectures = "spacy-curated-transformers.WithStridedSpans.v1"
 | 
				
			||||||
 | 
					> stride = 96
 | 
				
			||||||
 | 
					> window = 128
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Create a span getter for strided spans. If you set the `window` and `stride` to
 | 
				
			||||||
 | 
					the same value, the spans will cover each token once. Setting `stride` lower
 | 
				
			||||||
 | 
					than `window` will allow for an overlap, so that some tokens are counted twice.
 | 
				
			||||||
 | 
					This can be desirable, because it allows all tokens to have both a left and
 | 
				
			||||||
 | 
					right context.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name     | Description              |
 | 
				
			||||||
 | 
					| -------- | ------------------------ |
 | 
				
			||||||
 | 
					| `window` | The window size. ~~int~~ |
 | 
				
			||||||
 | 
					| `stride` | The stride size. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Tokenizer loaders
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Placeholder text for tokenizers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a Byte-BPE piece encoder model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name          | Description                           |
 | 
				
			||||||
 | 
					|---------------|---------------------------------------|
 | 
				
			||||||
 | 
					| `vocab_path`  | Path to the vocabulary file. ~~Path~~ |
 | 
				
			||||||
 | 
					| `merges_path` | Path to the merges file. ~~Path~~     |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a character piece encoder model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name        | Description                                                                 |
 | 
				
			||||||
 | 
					|-------------|-----------------------------------------------------------------------------|
 | 
				
			||||||
 | 
					| `path`      | Path to the serialized character model. ~~Path~~                            |
 | 
				
			||||||
 | 
					| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
 | 
				
			||||||
 | 
					| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~       |
 | 
				
			||||||
 | 
					| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
 | 
				
			||||||
 | 
					| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~            |
 | 
				
			||||||
 | 
					| `vocab`     | The shared vocabulary to use. ~~Optional[Vocab]~~                           |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a HuggingFace piece encoder model. Used in conjunction with the HuggingFace model loader.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name       | Description                                |
 | 
				
			||||||
 | 
					|------------|--------------------------------------------|
 | 
				
			||||||
 | 
					| `name`     | Name of the HuggingFace model. ~~str~~     |
 | 
				
			||||||
 | 
					| `revision` | Name of the model revision/branch. ~~str~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a SentencePiece piece encoder model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name   | Description                                          |
 | 
				
			||||||
 | 
					|--------|------------------------------------------------------|
 | 
				
			||||||
 | 
					| `path` | Path to the serialized SentencePiece model. ~~Path~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a WordPiece piece encoder model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name   | Description                                      |
 | 
				
			||||||
 | 
					|--------|--------------------------------------------------|
 | 
				
			||||||
 | 
					| `path` | Path to the serialized WordPiece model. ~~Path~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Model Loaders
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a supported transformer model with weights from a corresponding HuggingFace model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name       | Description                                |
 | 
				
			||||||
 | 
					|------------|--------------------------------------------|
 | 
				
			||||||
 | 
					| `name`     | Name of the HuggingFace model. ~~str~~     |
 | 
				
			||||||
 | 
					| `revision` | Name of the model revision/branch. ~~str~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Construct a callback that initializes a supported transformer model with weights from a PyTorch checkpoint.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name   | Description                              |
 | 
				
			||||||
 | 
					|--------|------------------------------------------|
 | 
				
			||||||
 | 
					| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user