mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Set vectors in chainer example
This commit is contained in:
parent
b701a08249
commit
1ed40682a3
|
@ -3,6 +3,9 @@ import plac
|
|||
import random
|
||||
import six
|
||||
|
||||
import cProfile
|
||||
import pstats
|
||||
|
||||
import pathlib
|
||||
import cPickle as pickle
|
||||
from itertools import izip
|
||||
|
@ -81,7 +84,7 @@ class SentimentModel(Chain):
|
|||
def __init__(self, nlp, shape, **settings):
|
||||
Chain.__init__(self,
|
||||
embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden'],
|
||||
initialW=lambda arr: set_vectors(arr, nlp.vocab)),
|
||||
set_vectors=lambda arr: set_vectors(arr, nlp.vocab)),
|
||||
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
|
||||
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
|
||||
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
|
||||
|
@ -95,11 +98,11 @@ class SentimentModel(Chain):
|
|||
|
||||
|
||||
class _Embed(Chain):
|
||||
def __init__(self, nr_vector, nr_dim, nr_out):
|
||||
def __init__(self, nr_vector, nr_dim, nr_out, set_vectors=None):
|
||||
Chain.__init__(self,
|
||||
embed=L.EmbedID(nr_vector, nr_dim),
|
||||
embed=L.EmbedID(nr_vector, nr_dim, initialW=set_vectors),
|
||||
project=L.Linear(None, nr_out, nobias=True))
|
||||
#self.embed.unchain_backward()
|
||||
self.embed.W.volatile = False
|
||||
|
||||
def __call__(self, sentence):
|
||||
return [self.project(self.embed(ts)) for ts in F.transpose(sentence)]
|
||||
|
@ -214,7 +217,6 @@ def set_vectors(vectors, vocab):
|
|||
vectors[lex.rank + 1] = lex.vector
|
||||
else:
|
||||
lex.norm = 0
|
||||
vectors.unchain_backwards()
|
||||
return vectors
|
||||
|
||||
|
||||
|
@ -223,7 +225,9 @@ def train(train_texts, train_labels, dev_texts, dev_labels,
|
|||
by_sentence=True):
|
||||
nlp = spacy.load('en', entity=False)
|
||||
if 'nr_vector' not in lstm_shape:
|
||||
lstm_shape['nr_vector'] = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
||||
lstm_shape['nr_vector'] = max(lex.rank+1 for lex in nlp.vocab if lex.has_vector)
|
||||
if 'nr_dim' not in lstm_shape:
|
||||
lstm_shape['nr_dim'] = nlp.vocab.vectors_length
|
||||
print("Make model")
|
||||
model = Classifier(SentimentModel(nlp, lstm_shape, **lstm_settings))
|
||||
print("Parsing texts...")
|
||||
|
@ -240,7 +244,7 @@ def train(train_texts, train_labels, dev_texts, dev_labels,
|
|||
optimizer = chainer.optimizers.Adam()
|
||||
optimizer.setup(model)
|
||||
updater = chainer.training.StandardUpdater(train_iter, optimizer, device=0)
|
||||
trainer = chainer.training.Trainer(updater, (20, 'epoch'), out='result')
|
||||
trainer = chainer.training.Trainer(updater, (1, 'epoch'), out='result')
|
||||
|
||||
trainer.extend(extensions.Evaluator(dev_iter, model, device=0))
|
||||
trainer.extend(extensions.LogReport())
|
||||
|
@ -305,11 +309,14 @@ def main(model_dir, train_dir, dev_dir,
|
|||
dev_labels = xp.asarray(dev_labels, dtype='i')
|
||||
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
||||
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 2,
|
||||
'nr_vector': 2000, 'nr_dim': 32},
|
||||
'nr_vector': 5000},
|
||||
{'dropout': 0.5, 'lr': learn_rate},
|
||||
{},
|
||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
|
||||
#s = pstats.Stats("Profile.prof")
|
||||
#s.strip_dirs().sort_stats("time").print_stats()
|
||||
plac.call(main)
|
||||
|
|
Loading…
Reference in New Issue
Block a user