Update website for v3 launch

This commit is contained in:
Ines Montani 2021-01-27 12:39:47 +11:00
parent e7db07a0b9
commit 1ed7029d47
9 changed files with 93 additions and 61 deletions

View File

@ -546,6 +546,8 @@ interactions in a sample dataset, but you can easily swap in your own dataset
for your experiments in any other domain.
</Project>
<YouTube id="8HL-Ap5_Axo"></YouTube>
#### Step 1: Implementing the Model {#component-rel-model}
We need to implement a [`Model`](https://thinc.ai/docs/api-model) that takes a

View File

@ -193,6 +193,8 @@ available for the different architectures are documented with the
</Infobox>
<YouTube id="BWhh3r6W-qE"></YouTube>
### Config lifecycle at runtime and training {#config-lifecycle}
A pipeline's `config.cfg` is considered the "single source of truth", both at
@ -423,9 +425,10 @@ frozen_components = ["parser", "custom"]
When the components in your pipeline
[share an embedding layer](/usage/embeddings-transformers#embedding-layers), the
**performance** of your frozen component will be **degraded** if you continue training
other layers with the same underlying `Tok2Vec` instance. As a rule of thumb,
ensure that your frozen components are truly **independent** in the pipeline.
**performance** of your frozen component will be **degraded** if you continue
training other layers with the same underlying `Tok2Vec` instance. As a rule of
thumb, ensure that your frozen components are truly **independent** in the
pipeline.
</Infobox>

View File

@ -67,6 +67,16 @@ improvements**. The [API docs](/api) include additional deprecation notes. New
methods and functions that were introduced in this version are marked with the
tag <Tag variant="new">3</Tag>.
<YouTube id="9k_EfV7Cns0"></YouTube>
<Grid cols={2} gutterBottom={false} narrow>
<YouTube id="BWhh3r6W-qE"></YouTube>
<YouTube id="8HL-Ap5_Axo"></YouTube>
</Grid>
### Transformer-based pipelines {#features-transformers}
> #### Example

View File

@ -8,8 +8,8 @@ import { markdownToReact } from './util'
import classes from '../styles/embed.module.sass'
const YouTube = ({ id, ratio = '16x9' }) => {
const embedClassNames = classNames(classes.root, classes.responsive, {
const YouTube = ({ id, ratio = '16x9', className }) => {
const embedClassNames = classNames(classes.root, classes.responsive, className, {
[classes.ratio16x9]: ratio === '16x9',
[classes.ratio4x3]: ratio === '4x3',
})

View File

@ -109,6 +109,7 @@ export const LandingBanner = ({
return (
<div className={classes.banner} style={style}>
<Grid cols={small ? null : 3} narrow className={contentClassNames}>
{(title || label) && (
<Heading Component="h3" className={classes.bannerTitle}>
{label && (
<div className={classes.bannerLabel}>
@ -119,6 +120,7 @@ export const LandingBanner = ({
{title}
</Link>
</Heading>
)}
<div className={textClassNames}>
<p>{children}</p>

View File

@ -26,12 +26,18 @@ const NavigationDropdown = ({ items = [], section }) => {
)
}
export default function Navigation({ title, items = [], section, search, children }) {
export default function Navigation({ title, items = [], section, search, alert, children }) {
return (
<nav className={classes.root}>
<Link to="/" aria-label={title} hidden>
<Link
to="/"
aria-label={title}
hidden
className={classNames({ [classes.hasAlert]: !!alert })}
>
<h1 className={classes.title}>{title}</h1>
<Logo className={classes.logo} width={300} height={96} />
{alert && <span className={classes.alert}>{alert}</span>}
</Link>
<div className={classes.menu}>

View File

@ -83,10 +83,33 @@
border: 2px dotted var(--color-theme)
outline: none
.has-alert
display: inline-flex
flex-flow: row nowrap
align-items: center
.alert
font-size: 1.2rem
font-family: var(--font-primary)
display: inline-block
background: var(--color-yellow-opaque)
color: var(--color-dark)
border-radius: var(--border-radius)
margin-left: var(--spacing-xs)
padding: 0.5rem
line-height: var(--line-height-xs)
text-align: center
@include breakpoint(max, xs)
.list
display: none
.alert
display: none
.has-alert
display: inline
@include breakpoint(min, sm)
.dropdown
display: none

View File

@ -108,6 +108,12 @@ const AlertSpace = ({ nightly }) => {
)
}
const navAlert = (
<Link to="/usage/v3" hidden>
<strong>💥 Out now:</strong> spaCy v3.0
</Link>
)
class Layout extends React.Component {
static defaultProps = {
scope: {},
@ -177,6 +183,7 @@ class Layout extends React.Component {
items={meta.navigation}
section={section}
search={<Search settings={meta.docSearch} />}
alert={navAlert}
>
<Progress key={location.href} />
</Navigation>

View File

@ -17,6 +17,7 @@ import { H2 } from '../components/typography'
import { InlineCode } from '../components/code'
import Button from '../components/button'
import Link from '../components/link'
import { YouTube } from '../components/embed'
import QuickstartTraining from './quickstart-training'
import Project from './project'
@ -24,7 +25,6 @@ import Features from './features'
import courseImage from '../../docs/images/course.jpg'
import prodigyImage from '../../docs/images/prodigy_overview.jpg'
import projectsImage from '../../docs/images/projects.png'
import irlBackground from '../images/spacy-irl.jpg'
import Benchmarks from 'usage/_benchmarks-models.md'
@ -206,50 +206,29 @@ const Landing = ({ data }) => {
</LandingGrid>
<LandingBannerGrid>
<LandingBanner
title="spaCy v3.0 nightly: Transformer-based pipelines, new training system, project templates &amp; more"
label="Try the pre-release"
to="https://nightly.spacy.io"
button="See what's new"
background="#8758fe"
color="#ffffff"
small
>
spaCy v3.0 features all new <strong>transformer-based pipelines</strong> that
bring spaCy's accuracy right up to the current <strong>state-of-the-art</strong>
. You can use any pretrained transformer to train your own pipelines, and even
share one transformer between multiple components with{' '}
<strong>multi-task learning</strong>. Training is now fully configurable and
extensible, and you can define your own custom models using{' '}
<strong>PyTorch</strong>, <strong>TensorFlow</strong> and other frameworks. The
new spaCy projects system lets you describe whole{' '}
<strong>end-to-end workflows</strong> in a single file, giving you an easy path
from prototype to production, and making it easy to clone and adapt
best-practice projects for your own use cases.
<LandingBanner background="#0099dd" color="#ffffff" small>
<YouTube id="9k_EfV7Cns0" />
</LandingBanner>
<LandingBanner
title="Prodigy: Radically efficient machine teaching"
label="From the makers of spaCy"
to="https://prodi.gy"
button="Try it out"
to="https://course.spacy.io"
button="Start the course"
background="#f6f6f6"
color="#000"
color="#252a33"
small
>
<Link to="https://prodi.gy" hidden>
<Link to="https://course.spacy.io" hidden>
<img
src={prodigyImage}
alt="Prodigy: Radically efficient machine teaching"
src={courseImage}
alt="Advanced NLP with spaCy: A free online course"
/>
</Link>
<br />
<br />
Prodigy is an <strong>annotation tool</strong> so efficient that data scientists
can do the annotation themselves, enabling a new level of rapid iteration.
Whether you're working on entity recognition, intent detection or image
classification, Prodigy can help you <strong>train and evaluate</strong> your
models faster.
In this <strong>free and interactive online course</strong> youll learn how to
use spaCy to build advanced natural language understanding systems, using both
rule-based and machine learning approaches. It includes{' '}
<strong>55 exercises</strong> featuring videos, slide decks, multiple-choice
questions and interactive coding practice in the browser.
</LandingBanner>
</LandingBannerGrid>